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1

Gold as an asset:
Composition of households
asset portfolio

Asset portfolio construction is one of the most fundamental economic ac-
tivities that households execute.1 Let us motivate the basic reason with a
simple economic argument. The standard wisdom is that people do not like
fluctuations in consumption. Note that it does not mean that they dislike
fluctuations in income! A basic formulation of a life-cycle savings problem
is as follows. A household lives for two periods, present (P ) and future (F ).
Let us say the household utility function is defined over consumption (C) as

U(CP , CF ) = u(CP ) + βU(CF ), (1.1)

where β is the subjective discount factor. The two-period budget constraint
is

CP + CF
1 + r

= y1 + y2
1 + r

, (1.2)

where r is the risk-free interest rate and {y1, y2} is the income stream. A
simple optimization shows that (under reasonable assumptions on curva-
ture of u(.)), this household will try to save in the present period, if the
current income exceeds the consumption demand and the future income is
not deemed sufficient.

This simple model makes an innocuous assumption that the household
can access a financial market (for both borrowing and lending) if need be.
In reality, that appears to be a problematic issue. Most of the less developed
economies are characterized by chronic lack of financial markets. Usually,
countries like India have vast population who are out of reach of the for-

1This chapter is based on some primary literature survey that Swarna Parameswaran
(FPM program, IIMA) had conducted under my supervision as a summer project (2017).
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mal financial market. Thus the consumption smoothing mechanism works
differently for households in rich countries vis-a-vis poor countries.

In such cases, households will resort to alternatives. Village economies
are characterized by informal risk-sharing through insurance among house-
holds. However, they also rely on tangible assets like land or gold for multiple
economic reasons. Often, these are used as collaterals for getting loans even
within the informal market. Gold has a special role in this regard. Other
physical collaterals like land, have intrinsic values for productive purpose.
Gold is an asset which has no productive usage (at least for rural or urban
households).

Gold as an asset is also special because of its social influence. For last
hundred years, the price of gold has not declined substantially and it has
emerged as a safe asset, where risk is apparently lower bounded. Due to
interaction of the economic argument (gold as a store of value) and social
developments (accumulation of gold confers higher prestige), gold has also
become a measure of the well known phenomenon of keeping up with the
Joneses.

1.1 Literature

The literature on economic and social effects of gold is not very extensive.
Let us first discuss the wealth inequality scenario and then we will discuss
the role gold in the economic and social context. Subramanian and Jayaraj
(2006) (see Ref. [8]) did a comprehensive analysis of the evolution of wealth
inequality (1961-62 to 2002-03) within India. They used the data from All
India Debt and Investment Surveys constructed by the National Statical
Survey organization. They made a general observation was that the real
wealth increased for the average households. Both urban and rural house-
holds grew the real wealth. Simultaneously, debt-holding also showed an
improvement. Interestingly, debt-holding turned out to be inversely related
to the size of asset holdings. This possibly indicates a feature of the house-
holds that they are treating debt and assets as substitutes for providing
consumption expenditure. Note that a more intuitive scenario would where
they are complements, i.e. those who have larger asset pool can afford to
take more debt.

A comparison across urban and rural households clearly indicate the
urban households are on an average more wealthy than their rural counter-
parts. This is not very surprising. An interesting feature that Subramanian
and Jayaraj (2006) found is that within rural households, those who culti-
vated typically held more assets than those who do not. This feature can be
linked to the broader perspective of the construction of asset portfolios. In-
dian households typically prefer physical assets than financial assets. There
can be a behavioral question as to why do they prefer that? The first simple
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model of consumption smoothing can not really answer that question, be-
cause the consumption smoothing mechanism only requires access to assets.
It does not really matter whether it is productive or not. One can conjecture
that it might have partly to do with the fact that most Indian households
are very close to the borrowing constraints and hence separation of produc-
tive and non-productive assets in the portfolio is difficult. Another factor is
that people enjoy not only the value of the asset but also the consumption
stream (from housing) of it. Gold as an unproductive asset is interesting
because the consumption value is also not tangible.

Lahoti et al (2011) (see Ref. [6]) did an analysis on individual asset
holding patterns in the Karnataka. They have used data from the Karnataka
Household Asset Survey 2010-2011 (KHAS)2 which has collected data on the
asset holdings of individuals (more than 4000 households) from randomly
selected 8 districts of the state spread across four regions of Karnataka
(Northern Maidan, Southern Maidan, Malnad and Coastal). This particular
survey included jewelry as a component of the household asset portfolio,
which provides a very important perspective for our purpose. It is clearly
seen that there is a gender-gap in holding of productive assets like land,
in favor of men over women. Quite intuitively, a reverse gender-gap arises
for holding of unproductive3 assets like gold. This finding is robust across
urban as well as rural households.

This is some basic indicative literature. For a complementary perspective
and description, interested readers can refer to Ref. [2], [4], [5] and references
therein.

At a general level, there are some regularities in wealth and income
distributions that apparently hold true across countries and time. The most
famous example is the Pareto principle or the 80-20 rule, which states that
20 per cent of the people in an economy holds 80 per cent of wealth. Sinha
(2006) (see Ref. [7]) analyzed the data for the richest Indians from 2002-2004
and showed that the wealth distribution of the rich follows a power-law and
has a Pareto exponent value in the range of 0.81 and 0.92.4 On the other
hand, the income distribution of the rich is log-normally distributed with a
power-law tail and the Pareto exponent approximately equal to 1.5. The fact
that the Pareto exponent value for the wealth distribution is lower than the
Pareto exponent for the income distribution indicates a greater inequality
in the distribution of wealth relative to the distribution of income. This
particular feature is actually known in the economics literature. Chakrabarti

2This was conducted by the Indian Institute of Management, Bengaluru.
3In the sense of economic production process.
4We should also note here that there was a long lasting debate about whether the

wealth/income distribution actually follows a power law or a log-normal distribution. For
a finite range, it is often impossible to statistically differentiate the two. Interested readers
can refer to Ref. [10] for a detailed discussion on this issue and a summary of empirical
facts.
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et al. (2017) (see Ref. [12]) analyzed the data for consumption inequality
and showed that the inequality is actually even lesser than that of income.
A general observation is that the income and wealth distribution of the
bulk of the population of a country (close to 90 percent) exhibits a gamma
distribution while the distribution of wealth for the richer sections of the
society follows a power-law decay. Interestingly, Gandhi and Walton (2012)
(see Ref. [3]) observed that nearly half of the billionaires in India (20 out
of 46) derive their wealth from “rent – thick” sectors such as real estate,
infrastructure, construction, port sectors, media, cement and mining.

1.2 Plan of the report
In the remaining chapters, we quantitatively analyze the economic and fi-
nancial nature of gold as an asset. In the next chapter, we will analyze the
price and return dynamics of gold in the world market. In the final chap-
ter, we analyze a general equilibrium model for gold accumulation across
generations. Finally, we summarize the finding and conclude.



2

Time series properties of the
gold price series

In this chapter, I explore some basic time-series properties of the gold price
and returns. I denote gold price series as pt and return by first difference of
log prices, i.e.

rt = log(pt)
log(pt−1) . (2.1)

I have collected time series data on gold prices (Gold Fixing Price 10:30
A.M. (London time) in London Bullion Market, based in U.S. Dollars) from

https://fred.stlouisfed.org/release?rid=256

The tools used here are fairly standard and are discussed in graduate
text-books. So I am not discussing the background material here. There
are many lucid expositions of these tools and techniques; interested readers
may refer to Ref. [11] which has a detailed discussion of all material.

2.1 Visual depiction of price and return data

The top panel of Fig. 2.1 shows the evolution of the gold price from
01/04/1968 to 12/03/2018. The bottom panel converts it into return r(t).
A feature that emerges from the return series is that volatility seems to
cluster around certain time points. This is a commonly known phenomenon
for financial time-series, which goes by the name of volatility clustering.

In order to examine the nature of clustering, we compute the autocor-
relation function (ACF) of the return series and the squared return series.
The results are presented in Fig. 2.2. The top panel shows that the acf in
return is essentially zero for all lags; whereas the acf for the squared return
decays at a much slower rate.

10
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Figure 2.1: Price data (top panel) and return data (bottom panel). The log
return series clearly indicates volatility clustering.

Figure 2.2: Analyzing the autocorrelation function (ACF). The return series
has zero autocorrelation at all lags. However, the squared series has positive
and significant autocorrelation till lag 20. This long ACF is a feature of many
financial time series.
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2.2 Modeling volatility
To model the dynamics of volatility, we use three variants of GARCH model.
A standard GARCH (p, q) model is given by the following equations:

rt = εt,

εt|ψt−1 ∼ N(0, σ2
t ) where ψt−1 is the information set,

σ2
t = ω +

p∑
i

αiε
2
t−i +

q∑
j

βjσ
2
t−j . (2.2)

I ran a GARCH(1,1) model on the data. Results are presented below.

GARCH(1,1) Conditional Variance Model:
----------------------------------------
Conditional Probability Distribution: Gaussian

Standard t
Parameter Value Error Statistic

----------- ----------- ------------ -----------
Constant 9.86673e-07 1.13118e-07 8.7225
GARCH{1} 0.896862 0.0016029 559.526
ARCH{1} 0.103138 0.00191193 53.9443

Nelson and Cao (1991) introduced EGARCH version which allows for
exponential weightage. The exponential GARCH (EGARCH) model admits
the following equations with modifications on the basic GARCH model:

rt = εt,

εt|ψt−1 ∼ N(0, σ2
t ) where ψt−1 is the information set,

log σ2
t = ω +

p∑
i

γig(Zt−i)2 +
q∑
j

βj log σ2
t−j , (2.3)

where the function g(x) = θx + λ(|x| − E(|x|)) (θ and λ are parameters)
and Z is a standard normal variable. The construction of the function g(.)
is such that it allows for different effects of sign and magnitude. The results
are presented below.

EGARCH(1,1) Conditional Variance Model:
--------------------------------------
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Conditional Probability Distribution: Gaussian

Standard t
Parameter Value Error Statistic

----------- ----------- ------------ -----------
Constant -0.180051 0.00676116 -26.6303
GARCH{1} 0.977851 0.000710922 1375.47
ARCH{1} 0.250753 0.00310781 80.6846

Leverage{1} 0.0245112 0.00191809 12.779

Finally, we also model volatility using Glosten-Jagannathan-Runkle GARCH
(GJR-GARCH). We take the innovation term εt = σtxt where xt is inde-
pendent and identically distributed error term; and, we incorporate a step
function It to allow for asymmetry in the ARCH process for volatility. The
new volatility equation for GJR-GARCH(1,1) looks as follows:

σ2
t = ω + αε2t−1 + βσ2

t−1 + γε2t−1.Iεt−1<0. (2.4)

Thus if the realization of ε is negative, then there will be a positive impact on
the volatility. This allows for inclusion of asymmetric impact of positive and
negative returns on volatility. This kind of modeling is motivated by em-
pirical properties of the financial market. Estimation results are presented
below.

GJR(1,1) Conditional Variance Model:
--------------------------------------
Conditional Probability Distribution: Gaussian

Standard t
Parameter Value Error Statistic

----------- ----------- ------------ -----------
Constant 9.31708e-07 1.11833e-07 8.33125
GARCH{1} 0.900322 0.00150577 597.915
ARCH{1} 0.116689 0.00247857 47.0794

Leverage{1} -0.0340232 0.00263994 -12.8879

2.3 Spectral analysis

Here the essential idea is to decompose the return series r(t) into a combi-
nation of sinusoidal curves. Thus we translate the time series information
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into frequency domain information. Given the series r(t), I execute a dis-
crete Fourier transform (following the notation in Matlab documentation)
as follows:

Y (k) =
n∑
j

r(j)W (j−1)(k−1)
n (2.5)

where
Wn = exp(−2πi/n). (2.6)

Figure 2.3: Single-Sided Amplitude Spectrum of the return series.

The results are presented in Fig. 2.3 for r(t) and r2(t). The results do
not indicate any particular periodic movement.



3

General equilibrium
modeling of wealth
accumulation

In this section, I develop a model for analyzing the mechanism of gold accu-
mulation across generations.1 I consider an economy where gold is the only
asset that is used for trading purpose as well as for the purpose of bequests.
Below, I first discuss the modeling approach and provide three variations
of the model which generates non-trivial distribution of assets across house-
holds. Finally, I will discuss potential extensions of the framework.

3.1 Modeling approach: General equilibrium
The main motivation and theoretical structure for this type of modeling
have been discussed in details in [9] and [10]. In order to avoid repetition,
I am not discussing them here. Interested readers should consult these two
references and references contained therein.

There are N dynasties denoted by i ∈ N . Each dynasty has an en-
dowment of gold gi0 at the beginning of time i.e. t = 0. Each dynasty is
populated by one person at every point of time who lives for one period.2 At
the beginning of each period, the i-th dynasty (i ∈ N) gets an endowment
of a tradable good Qi > 0.

We assume that
Qi ∼ uni[0, 1] (3.1)

and in general,
Qi 6= Qj (3.2)

1I gratefully acknowledge research assistance provided by Sanjay Moorjani for numer-
ically solving the models discussed in this chapter.

2We can easily make the model two-periods with the usual interpretation of overlapping
generations. However, for the current exercise, one-period construction suffices.
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for all {i, j}.
The assumption of uniform distribution for the production endowment

is not restrictive. The model we propose will work for any positive value fo
endowments. However, we have to be careful while using distributions like
Normal for example, as theoretically that kind of distributions will include
negative values as well.

3.1.1 Bilateral matching

Once the dynasties get their endowments they are bilaterally matched with
trading partners. We assume that the endowments are differentiated across
the place of origin, i.e. different dynasties produce different types of output.
Given that the utility functions are defined over all types of goods, there
would be an incentive for all dynasties to trade.

In principle, we can consider a common market place where all repre-
sentatives of all dynasties meet at every point of time and carry out trade.
However, here we consider a more realistic scenario of only two randomly
chosen agents (from two different dynasties) meeting with each other and
carry out trade. Thus at every point of time, each dynasty has a probability
of 1/N of participation in the trading activity.

3.2 Trading mechanism

Trading occurs across two traders over two goods, and gold functions as a
method to settle payments. Households also derive utility from bequesting
gold to the next generations.

We accommodate this feature by using money in the utility function
formalism. This kind of modeling is also related to the warm-glow utility
functions, where the household derives utility from bequests.

We impose a competitive trading mechanism. Prices are set such that
the markets for both goods clear. Then by Walras’ law, the market for gold
also clears.

3.3 Numerical recipe for solving f(x) = 0

For the competitive model, the market clearing equations turn out to be
nonlinear in prices. Hence, solving for the market clearing prices become
analytically almost impossible (except under some restrictive conditions).
So we resort to numerical methods to find out the equilibrium prices.

Suppose, we denote the excess demand of a commodity as a function of
the price vector p:

x = x(p). (3.3)



3.4. MODEL I 17

Then the equilibrium is achieved where all commodity markets clear. We
succintly write it as (in vector notation)

f(x) = 0. (3.4)

To solve the set of equations, we follow Broyden’s method (generalization
of the gradient-descent method). Here, we encounter a problem. Ideally,
there is one price vector which clears the markets.3 However, given the set
of market clearing equations we cannot guarantee that there is an unique
solution. Th bigger problem is that some the solutions could be complex
numbers, which makes little economic sense.

Essentially, the problem of convergence and complex solutions cannot
be avoided in this set up. Hence, although the models are well-defined the
solutions often are not. Numerically, we attempt to solve the equations for
each trade. But for repeated trading for a large number of iterations (around
103 trades for each round and averaged over 103 rounds), sometimes the
algorithm breaks midway as it either fails to converge or produces complex
solutions for prices.4

With trial and error, we have identified several parameter configurations,
for which the solution can be found numerically. Below, we first describe
the details of the model and then provide the solutions. In particular, we
have three variants of the model, each with different interpretation of the
utility function.

3.4 Model I
It is a model with binary trading. Time is discrete. At a generic time point
t, two agents (1 and 2) are chosen with replacement.

For agent 1, the utility function and the budget constraint is given as
follows:

U1 =
(
a1x

r
1 + a2x

r
2 + a3g

r
1
) 1
r where a1 + a2 + a3 = 1 (3.5)

BC1 : p1x1 + p2x2 + g1 ≤ p1Q1 +G1 (3.6)
(3.7)

For agent 2, the utility function and the budget constraint is given as
follows:

U2 =
(
b1y

r
1 + b2y

r
2 + b3g

r
2
) 1
r ,where b1 + b2 + b3 = 1 (3.8)

BC2 : p1y1 + p2y2 + g2 ≤ p2Q2 +G2 (3.9)
3We know this from basic general equilibrium theory. See for example, Mascollel,

Whinston and Green (2002). We can use Brower’s fixed point theorem to show existence
of a solution.

4We have provided codes for both Matlab and python in the appendix of this report.
This problem is not programming language specific.
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3.4.1 First order conditions

We first set up the optimization problem using a Lagrange multiplier:

L1 =
(
a1x

r
1 + a2x

r
2 + a3g

r
1
) 1
r + λ1

(
p1Q1 +G1 − p1x1 − p2x2 − g1

)
(3.10)

L2 =
(
b1y

r
1 + b2y

r
2 + b3g

r
2
) 1
r + λ2

(
p2Q2 +G2 − p1y1 − p2y2 − g2

)
.(3.11)

Below, we list the first order conditions:

∂L1
∂x1

:
(
a1x

r
1 + a2x

r
2 + a3g

r
1
) 1
r

−1
a1x

r−1
1 − λ1p1 = 0 (3.12)

∂L1
∂x2

:
(
a1x

r
1 + a2x

r
2 + a3g

r
1
) 1
r

−1
a2x

r−1
2 − λ1p2 = 0 (3.13)

∂L1
∂g1

:
(
a1x

r
1 + a2x

r
2 + a3g

r
1
) 1
r

−1
a3g

r−1
1 − λ1 = 0 (3.14)

Hence, a1x
r−1
1
p1

= a2x
r−1
2
p2

= a3g
r−1
1 (3.15)

Similarly, b1y
r−1
1
p1

= b2y
r−1
2
p2

= b3g
r−1
2 . (3.16)

3.4.2 Demand functions

After solving the FOCs, we get the following demand functions (for both
agents, both goods as well as for gold):

x∗
1 = G1+p1Q1

p1+p2

(
p2a1
p1a2

) 1
r−1

+

(
a1
p1a3

) 1
r−1

(3.17)

x∗
2 = G1+p1Q1

p2+p1

(
p1a2
p2a1

) 1
r−1

+

(
a2
p2a3

) 1
r−1

(3.18)

y∗
1 = G2+p2Q2

p1+p2

(
p2b1
p1b2

) 1
r−1

+

(
b1
p1b3

) 1
r−1

(3.19)

y∗
2 = G2+p2Q2

p2+p1

(
p1b2
p2b1

) 1
r−1

+

(
b2
p2b3

) 1
r−1

(3.20)

g∗
1 = G1+p1Q1

p1

(
p1a3
a1

) 1
r−1

+p2

(
p2a3
a2

) 1
r−1

+1

(3.21)

g∗
2 = G2+p2Q2

p1

(
p1b3
b1

) 1
r−1

+p2

(
p2b3
b2

) 1
r−1

+1

(3.22)
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3.4.3 Market Clearing equations

Combining the first order conditions, we can write the market clearing equa-
tions as follows.

G1 + p1Q1

p1 + p2

(
p2a1
p1a2

) 1
r−1

+
(

a1
p1a3

) 1
r−1

+ G2 + p2Q2

p1 + p2

(
p2b1
p1b2

) 1
r−1

+
(

b1
p1b3

) 1
r−1

= Q1(3.23)

G1 + p1Q1

p2 + p1

(
p1a2
p2a1

) 1
r−1

+
(

a2
p2a3

) 1
r−1

+ G2 + p2Q2

p2 + p1

(
p1b2
p2b1

) 1
r−1

+
(

b2
p2b3

) 1
r−1

= Q2(3.24)

3.4.4 Distribution of gold across dynasties

We are now in a position to analyze the distribution of assets across dynas-
ties. Note that the same model also generates the dynamics of gold-holding
across generations within a particular dynasty.

In the following figures, we provide the distribution of wealth across
dynasties along with an exponential distribution. We see that as the relative
weight a3 increases, the mode of the distribution shifts to the right, reducing
inequality.
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Figure 3.1: Simulation Results for Model I: a3=0.02, sigma=0. The red line
indicates an exponential distribution. The x-axis denotes gold holding g,
y-axis denotes the probability density function P (g).

3.5 Model II

Similar to the earlier model, it is a model with binary trading. Time is
discrete. At a generic time point t, two agents (1 and 2) are chosen with
replacement.

For agent 1, the utility function and the budget constraint is given as
follows:

U1 = xa1
1 x

a2
2 g

a3
1 ,where a1 + a2 + a3 = 1 (3.25)

BC1 : p1x1 + p2x2 + g1 ≤ p1Q1 +G1 (3.26)
(3.27)

For agent 2, the utility function and the budget constraint is given as
follows:

U2 = xb1
1 x

b2
2 g

b3
2 ,where b1 + b2 + b3 = 1 (3.28)

BC2 : p1y1 + p2y2 + g2 ≤ p2Q2 +G2 (3.29)
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Figure 3.2: Simulation Results for Model I: a3=0.3, sigma=0. The red line
indicates an exponential distribution. The x-axis denotes gold holding g,
y-axis denotes the probability density function P (g).

3.5.1 First order conditions

We first set up the optimization problem using a Lagrange multiplier:

L1 = xa1
1 x

a2
2 m

a3
1 + λ1

(
p1Q1 +G1 − p1x1 − p2x2 − g1

)
(3.30)

L2 = xb1
1 x

b2
2 m

b3
2 + λ2

(
p2Q2 +G2 − p1y1 − p2y2 − g2

)
(3.31)

Below, we list the first order conditions:

∂L1
∂x1

: a1x
a1−1
1 xa2

2 g
a3
1 − λ1p1 = 0 (3.32)

∂L1
∂x2

: a2x
a1
1 x

a2−1
2 ga3

1 − λ1p2 = 0 (3.33)

∂L1
∂m1

: a3x
a1
1 x

a2
2 g

a3−1
1 − λ1 = 0. (3.34)

Hence,
a1
x1p1

= a2
x2p2

= a3
g1
.
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Figure 3.3: Simulation Results for Model I: a3=0.6, sigma=0. The red line
indicates an exponential distribution. The x-axis denotes gold holding g,
y-axis denotes the probability density function P (g).

Similarly,
b1
y1p1

= b2
y2p2

= b3
g2
.

3.5.2 Demand functions

After solving the FOCs, we get the following demand functions (for both
agents, both goods as well as for gold):

x∗
1 = a1

G1+p1Q1
p1

(3.35)

x∗
2 = a2

G1+p1Q1
p2

(3.36)

y∗
1 = b1

G2+p2Q2
p1

(3.37)

y∗
2 = b2

G2+p2Q2
p2

(3.38)
g∗

1 = a3
(
G1 + p1Q1

)
(3.39)

g∗
2 = b3

(
G2 + p2Q2

)
(3.40)
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Figure 3.4: Simulation Results for Model I: a3=0.02, sigma=0.1. The red
line indicates an exponential distribution. The x-axis denotes gold holding
g, y-axis denotes the probability density function P (g).

3.5.3 Market Clearing equations

Combining the first order conditions, we can write the market clearing equa-
tions as follows.

a1
G1 + p1Q1

p1
+ b1

G2 + p2Q2
p1

= Q1 (3.41)

a2
G1 + p1Q1

p2
+ b2

G2 + p2Q2
p2

= Q2 (3.42)

3.5.4 Distribution of gold across dynasties

Similar to model I, here also we can analyze the distribution of assets across
dynasties. The same model also generates the dynamics of gold-holding
across generations within a particular dynasty. We ignore the wealth accu-
mulation dynamics here.

In the following figures, we provide the distribution of wealth across
dynasties along with an exponential distribution.
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Figure 3.5: Simulation Results for Model I: a3=0.3, sigma=0.1. The red
line indicates an exponential distribution. The x-axis denotes gold holding
g, y-axis denotes the probability density function P (g).

3.6 Model III

Similar to model I, it is a model with binary trading. Time is discrete. At
a generic time point t, two agents (1 and 2) are chosen with replacement.

For agent 1, the utility function and the budget constraint is given as
follows:

U1 = µ1x
a1
1 x

a2
2 + (1− µ1)gγ1 , where a1 + a2 = 1 (3.43)

BC1 : p1x1 + p2x2 + g1 ≤ p1Q1 +G1 (3.44)
(3.45)

For agent 2, the utility function and the budget constraint is given as
follows:

U2 = µ2y
b1
1 y

b2
2 + (1− µ2)gγ2 , where b1 + b2 = 1 (3.46)

BC2 : p1y1 + p2y2 + g2 ≤ p2Q2 +G2 (3.47)



3.6. MODEL III 25

Figure 3.6: Simulation Results for Model I: a3=0.6, sigma=0.1. The red
line indicates an exponential distribution. The x-axis denotes gold holding
g, y-axis denotes the probability density function P (g).

3.6.1 First order conditions

3.6.2 First order conditions

We first set up the optimization problem using a Lagrange multiplier:

L1 = µ1x
a1
1 x

a2
2 + (1− µ1)gγ1 + λ1

(
p1Q1 +G1 − p1x1 − p2x2 − g1

)
(3.48)

L2 = µ2y
b1
1 y

b2
2 + (1− µ2)gγ2 + λ2

(
p2Q2 +G2 − p1y1 − p2y2 − g2

)
(3.49)

Below, we list the first order conditions:

∂L1
∂x1

: µ1a1x
a1
1 x

a2
2

x1
− λ1p1 = 0 (3.50)

∂L1
∂x2

: µ1a2x
a1
1 x

a2
2

x2
− λ1p2 = 0 (3.51)

∂L1
∂g1

: γ(1− µ1)gγ−1
1 − λ1 = 0. (3.52)
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Figure 3.7: Simulation Results for Model II: a3=0.01. The x-axis denotes
gold holding g, y-axis denotes the probability density function P (g).

3.6.3 Demand functions

After solving the FOCs, we get the following demand functions (for both
agents, both goods as well as for gold). In this case we cannot explicitly
solve for the demand functions. However, we know that at optimal, the
following equations hold:

µ1a1x
a1−1
1 xa2

2
p1

= µ1a2x
a1
1 x

a2−1
2

p2

= γ(1− µ1)gγ−1
1 . (3.53)

This equation is nothing but MRS = price ratio. Hence, the basic intuitions
of optimization suffices to see why it appears. Similarly, for the second
agent,

µ2b1y
b1−1
1 yb2

2
p1

= µ2b2y
b1
1 y

b2−1
2

p2

= γ(1− µ2)gγ−1
2 . (3.54)
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Figure 3.8: Simulation Results for Model II: a3=0.1. The x-axis denotes
gold holding g, y-axis denotes the probability density function P (g).

3.6.4 Numerically solved system of equations

Since this model cannot be solved explicitly, I collect all the relevant equa-
tions here. The equations for first order conditions as well as for market
clearance are shown below.

µ1a1x
∗a1−1
1 x∗a2

2 p2 = µ1a2x
∗a1
1 x∗a2−1

2 p1 (3.55)
µ1a1x

∗a1−1
1 x∗a2

2 = γ(1− µ1)g∗γ−1
1 p1 (3.56)

µ1b1y
∗b1−1
1 y∗b2

2 p2 = µ1b2y
∗b1
1 y∗b2−1

2 p1 (3.57)
µ1b1y

∗b1−1
1 y∗b2

2 = γ(1− µ1)g∗γ−1
2 p1 (3.58)

p1x
∗
1 + p2x

∗
2 + g∗

1 = p1Q1 +G1 (3.59)
p1y

∗
1 + p2y

∗
2 + g∗

2 = p2Q2 +G2 (3.60)
x∗

1 + y∗
1 = Q1 (3.61)

x∗
2 + y∗

2 = Q2 (3.62)

where, x∗
1, x

∗
2, y

∗
1, y

∗
2, g

∗
1, g

∗
2, p1 and p2 are the unknowns.
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Figure 3.9: Simulation Results for Model II: a3=0.3. The x-axis denotes
gold holding g, y-axis denotes the probability density function P (g).
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Figure 3.10: Simulation Results for Model II: a3=0.6. The x-axis denotes
gold holding g, y-axis denotes the probability density function P (g).



4

Summary and conclusion

In this report, I have analyzed gold price dynamics as well as the distribution
of gold in an economy with heterogeneous households. We see that gold
return series has time-series properties very similar to those of other financial
assets.

Then I provide a model with overlapping generations mechanism that
allows me to model wealth distribution through warm-glow utility func-
tions. This model has two properties: it generates time-series properties
for individual households and, it also generates distribution of assets across
households in the steady state.

One problem with the framework is that often prices do not converge to
the equilibrium values. In most of the cases (except under very restrictive
assumptions) these models are not analytically solvable. Hence, we resort
to numerical solutions. However, even in simple cases, the equations are
so nonlinear that the prices do not converge with standard numerical root-
finding algorithms.

In future, an interesting direction would to solve the model for a general
specification of the utility function and stochastic endowments. If one can
find a robust method for solving that, then we can the model as a laboratory
to find out the effect of preferences and production structure on inequality.

30
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Appendix

5.1 Matlab codes

5.1.1 Binary trade mechanism

%Implement computable general equilibrium trade
%Generalized kinetic exchange model\\
%Numerical solution to KWEM general equilibrium method\\

%Written by Anindya S. Chakrabarti, 21/2/2018\\

%Utility function: u=(a_1x_1^r+ b_1x_2^r+ a_3m^r)^(1/r)

clc;
clear all;

n=2;
money_mat=[1 1];

%List of paramters
global M1 M2 Q1 Q2 a1 a2 a3 b1 b2 b3 r

%Exogenous parameters
Q1=1;
Q2=1;

%Preference parameters
r=.001;
a3=.2;b3=a3;

i=1;j=2;
M1=money_mat(1);M2=money_mat(2);

31
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a1=.490;
a2=1-a3-a1;
b1=a1;b2=a2;

TheoryP=ones(n,1);
TheoryP(1)=(a1/a3)*(M1+M2)/Q1;TheoryP(2)=(a2/a3)*(M1+M2)/Q2;
fprintf(’Initial: P1,P2=%.4f,%.4f\n’,TheoryP(1),TheoryP(2));

P=ones(n,1);
%options=optimset(’Algorithm’,’Levenberg-Marquardt’,’MaxIter’,500);%,’Display’,’iter’)%,’PlotFcn’,@optimplotfirstorderopt);
options=optimset(’Algorithm’,’trust-region-reflective’,’MaxIter’,500);

[P,~,exitflag] = fsolve(@focfn,ones(size(P)),options);

P1=P(1);P2=P(2);

m1=(M1+P1*Q1)/(1+P1*(P1*a3/a1)^(1/(r-1))+P2*((P2*a3)/a2)^(1/(r-1)));
m2=(M2+P2*Q2)/(1+P1*(P1*b3/b1)^(1/(r-1))+P2*((P2*b3)/b2)^(1/(r-1)));

fprintf(’M1,M2=%.4f,%.4f\n’,M1,M2);

fprintf(’m1,m2=%.4f,%.4f\n’,m1,m2);

fprintf(’P1,P2=%.4f,%.4f\n’,P1,P2);

5.1.2 Binary trades with multiple agents

%Implement computable general equilibrium trade
%Generalized kinetic exchange model
%Numerical solution to KWEM general equilibrium method

%Written by Anindya S. Chakrabarti, 21/2/2018

%Utility function: u=(a_1x_1^r+ b_1x_2^r+ a_3m^r)^(1/r)

clc;
clear all;

n=2; %n-ary trade
N=100; %Number of agents
T=500; %Iterations in one instance

unit=0.05; %Unit on x-axis for plotting pdf



5.1. MATLAB CODES 33

x_axis=0:unit:N;

tic;

money_mat=zeros(N,T);
money_mat(:,1)=ones(N,1);

%List of paramters
global M1 M2 Q1 Q2 a1 a2 a3 b1 b2 b3 r

%Exogenous parameters
Q1=1;
Q2=1;

%Preference parameters
r=.1;
a3=.01;b3=a3;

store_a=ones(T,1).*2;

for t=2:T;

choose_agents=randsample(N,n);
i=choose_agents(1);j=choose_agents(2);

M1=money_mat(i,t-1);M2=money_mat(j,t-1);

a1=unifrnd(0,1-a3);
a2=1-a3-a1;
store_a(t)=min(a1,a2);

b1=a1;%unifrnd(0,1-b3);
b2=a2;%1-b3-b1;

P=ones(n,1);
%options=optimset(’Algorithm’,’Levenberg-Marquardt’);%,...
% ’Display’,’iter’)%,’PlotFcn’,@optimplotfirstorderopt);
%options=optimset(’MaxIter’,500);
[P,~,exitflag] = fsolve(@focfn,ones(size(P)));%,options);
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fprintf(’min(a1,a2)=%.4f,t=%d \n’,min(a1,a2),t);

if (exitflag<0);
break;

end;
P1=P(1);P2=P(2);

m1=(M1+P1*Q1)/(1+P1*(P1*a3/a1)^(1/(r-1))...
+P2*((P2*a3)/a2)^(1/(r-1)));

m2=(M2+P2*Q2)/(1+P1*(P1*b3/b1)^(1/(r-1))...
+P2*((P2*b3)/b2)^(1/(r-1)));

money_mat(:,t)=money_mat(:,t-1);
money_mat(i,t)=m1;money_mat(j,t)=m2;

end;

[y,x]=hist(money_mat(:,t-1),x_axis);

figure;
subplot(1,3,1);
plot(x_axis,y./(sum(y)*unit));
xlim([0 5]);xlabel(’w’);ylabel(’P(w)’);
subplot(1,3,2);
plot(store_a(2:t),’-o’);xlabel(’time’);ylabel(’min(a1,a2)’);
ylim([0 1-a3]);
subplot(1,3,3);
plot(sum(money_mat,1),’r-o’);xlabel(’time’);ylabel(’sum_i w_i’);
ylim([N-1 N+1]);

toc;

5.1.3 Binary trades with multiple agents and averaging

%Implement computable general equilibrium trade
%Generalized kinetic exchange model
%Numerical solution to KWEM: general equilibrium method

%Written by Anindya S. Chakrabarti, 26/2/2018

%Utility function: u=(a_1x_1^r+ b_1x_2^r+ a_3m^r)^(1/r)
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clc;
clear all;

n=2; %n-ary trade
N=100; %Number of agents
T=2000; %Iterations in one instance
MaxInstances=100; %Number of instances
delta=.0; %For numerical purpose we need to adjust the range of

%a1 and a2 such that min(a1,a2)>delta.

unit=0.05; %Unit on x-axis for plotting pdf
x_axis=0:unit:N;
store_pdf=zeros(MaxInstances,length(x_axis));

tic;
%store_money_mat=zeros(N,T,MaxInstances);

%List of paramters
global M1 M2 Q1 Q2 a1 a2 a3 b1 b2 b3 r

%Preference parameters
r=0.01;
a3=.02; %Do NOT take a3<0.02
b3=a3;

%Production parameter
mu=1;
sigma=0.01;

for inst=1:MaxInstances;

money_mat=zeros(N,T);
money_mat(:,1)=ones(N,1);

for t=2:T;

%Production level
Q1=normrnd(mu,sigma);
Q2=normrnd(mu,sigma);
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choose_agents=randsample(N,n);
i=choose_agents(1);j=choose_agents(2);

M1=money_mat(i,t-1);M2=money_mat(j,t-1);

a1=unifrnd(delta,1-a3-delta); % NOTICE THE DELTA ADJUSTMENT
a2=1-a3-a1;
b1=a1;%unifrnd(0,1-b3);
b2=a2;%1-b3-b1;

P=ones(n,1);
options=optimset(’Algorithm’,’Levenberg-Marquardt’,’MaxIter’,500);%,...
% ’Display’,’iter’)%,’PlotFcn’,@optimplotfirstorderopt);
%options=optimset(’MaxIter’,500);
[P,~,exitflag] = fsolve(@focfn,ones(size(P)),options);

if (exitflag<0||min(P)<0);
return;

end;
P1=P(1);P2=P(2);

m1=(M1+P1*Q1)/(1+P1*(P1*a3/a1)^(1/(r-1))...
+P2*((P2*a3)/a2)^(1/(r-1)));

m2=(M2+P2*Q2)/(1+P1*(P1*b3/b1)^(1/(r-1))...
+P2*((P2*b3)/b2)^(1/(r-1)));

money_mat(:,t)=money_mat(:,t-1);
money_mat(i,t)=m1;money_mat(j,t)=m2;

fprintf(’Instance=%d, t=%d \n’,inst,t);
end;

%store_money_mat(:,:,inst)=money_mat;

[y,x]=hist(money_mat(:,end),x_axis);
store_pdf(inst,:)=y./(sum(y)*unit);

end;

toc;
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figure;
plot(x_axis,mean(store_pdf(1:inst,:),1),x_axis,exp(-x_axis));
xlim([0 5]);

Function file

function F = focfn(P)

global M1 M2 Q1 Q2 a1 a2 a3 b1 b2 b3 r

%Problematic syntax
%Fcheck =[(M1+P(1)*Q1)/(P(1)+P(2)*((P(2)*a1)/(P(1)*a2))^(1/(r-1))+(a1/(P(1)*a3))^(1/(r-1)))+ ...
% (M2+P(2)*Q2)/(P(1)+P(2)*((P(2)*b1)/(P(1)*b2))^(1/(r-1))+(b1/(P(1)*b3))^(1/(r-1))) - Q1 ;
% (M1+P(1)*Q1)/(P(2)+P(1)*((P(1)*a2)/(P(2)*a1))^(1/(r-1))+(a2/(P(2)*a3))^(1/(r-1)))+ ...
% (M2+P(2)*Q2)/(P(2)+P(1)*((P(1)*b2)/(P(2)*b1))^(1/(r-1))+(b2/(P(2)*b3))^(1/(r-1))) - Q2];

d11=P(1)+P(2)*((P(2)*a1)/(P(1)*a2))^(1/(r-1))+(a1/(P(1)*a3))^(1/(r-1));
d12=P(1)+P(2)*((P(2)*b1)/(P(1)*b2))^(1/(r-1))+(b1/(P(1)*b3))^(1/(r-1));
d21=P(2)+P(1)*((P(1)*a2)/(P(2)*a1))^(1/(r-1))+(a2/(P(2)*a3))^(1/(r-1));
d22=P(2)+P(1)*((P(1)*b2)/(P(2)*b1))^(1/(r-1))+(b2/(P(2)*b3))^(1/(r-1));

F = [( M1 + P(1) * Q1 ) + ( M2 + P(2) * Q1 ) - Q1 * d12 ;
( M1 + P(1) * Q1 ) + ( M2 + P(2) * Q2 ) - Q2 * d22 ] ;

end
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5.2 Python codes

This set of codes are written by Sanjay Moorjani. The results are similar to
the Matlab codes. However, occasionally differences appear in the results
because of usage of different numerical solvers. As noted earlier, convergence
is a big issue for solving the nonlinear market-clearing equations.

5.2.1 Binary trade

from scipy.optimize import fsolve
from sympy import symbols, diff
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import UnivariateSpline
from scipy.stats.kde import gaussian_kde
from numpy import linspace

M1=1
M2=1
Q1=1
Q2=1
a3=0.9
b3=a3
r=0.01

lowerBound=0
upperBound =0
binwidth = 0.05

numberOfAgents = 100
numberOfInstances = 1000

MoneyArray = np.ones(numberOfAgents)

max_iter = 1000

def FOC1(P1, P2, M1, M2):
return ((M1+M2+P1*Q1+P2*Q2) - (P1 + P2*((P2*a1)/(P1*a2))**(1/(r-1)) + a3*((a1)/(P1*a3))**(1/(r-1)))*Q1)

def FOC2(P1, P2, M1, M2):
return ((M1+M2+P1*Q1+P2*Q2) - (P2 + P1*((P1*a2)/(P2*a1))**(1/(r-1)) + a3*((a2)/(P2*a3))**(1/(r-1)))*Q2)
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def equations(p):
P1, P2 = p
return (FOC1(P1,P2,M1,M2), FOC2(P1,P2,M1,M2))

moneyEvolution1 = []
moneyEvolution2 = []
total = []
store_moneyHistograms = []
# store_pdf=zeros(5/unit+1,num_av);
AverageMoneyArray = np.zeros((1,100))
print(AverageMoneyArray)

for y in range(numberOfInstances):

MoneyArray = np.ones(numberOfAgents)
print(MoneyArray)

for x in range(max_iter):

a1= np.random.uniform(0,1-a3,1)[0]
b1= a1

a2=1-a1-a3
b2=1-b1-b3

agents= np.random.random_integers(numberOfAgents, size=(1,2))
# print(agents)

M1= MoneyArray[agents[0,0]-1]
# print(M1)
M2= MoneyArray[agents[0,1]-1]

P1, P2 = fsolve(equations,(1,1))

# m1 = (1-a1-a2)*(M1 + P1*Q1)
# m2 = (1-b1-b2)*(M2 + P2*Q2)

m1 = a3*(M1 + P1*Q1)
m2 = b3*(M2 + P2*Q2)

MoneyArray[agents[0,0]-1]=m1
MoneyArray[agents[0,1]-1]=m2
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if(min(MoneyArray)<lowerBound):
lowerBound=min(MoneyArray)

if(upperBound<max(MoneyArray)):
upperBound=max(MoneyArray)

data = MoneyArray
binwidth = 0.05
hist, binedges=np.histogram(data, bins=np.arange(0, 5 + binwidth, binwidth))
normalizedhist = hist/(hist.sum())

print(normalizedhist)
print(binedges)

store_moneyHistograms.append(normalizedhist)

finalHist=np.average(store_moneyHistograms, axis=0)
xAxis=np.arange(0, 5 , binwidth)
print(xAxis)
print(finalHist)

plt.bar(xAxis, finalHist, width=0.1)
plt.title("a3=0.9")

5.2.2 Binary trade within a population

from scipy.optimize import fsolve
from sympy import symbols, diff
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import UnivariateSpline
from scipy.stats.kde import gaussian_kde
from numpy import linspace

M1=1
M2=1
Q1=1
Q2=1
a3=0.1
b3=a3
r=10
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lowerBound=0
upperBound =0
binwidth = 0.05

numberOfAgents = 100
numberOfInstances = 1

MoneyArray = np.ones(numberOfAgents)

max_iter = 1000

def FOC1(P1, P2, M1, M2):
return ((M1+M2+P1*Q1+P2*Q2) - (P1 + P2*((P2*a1)/(P1*a2))**(1/(r-1)) + ((a1)/(P1*a3))**(1/(r-1)))*Q1)

def FOC2(P1, P2, M1, M2):
return ((M1+M2+P1*Q1+P2*Q2) - (P2 + P1*((P1*a2)/(P2*a1))**(1/(r-1)) + ((a2)/(P2*a3))**(1/(r-1)))*Q2)

def equations(p):
P1, P2 = p
return (FOC1(P1,P2,M1,M2), FOC2(P1,P2,M1,M2))

moneyEvolution1 = []
moneyEvolution2 = []
total = []
store_moneyHistograms = []
# store_pdf=zeros(5/unit+1,num_av);
AverageMoneyArray = np.zeros((1,100))
print(AverageMoneyArray)

for y in range(numberOfInstances):

MoneyArray = np.ones(numberOfAgents)
print(MoneyArray)

for x in range(max_iter):

a1= np.random.uniform(0,1-a3,1)[0]
b1= a1

a2=1-a1-a3
b2=1-b1-b3
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agents= np.random.random_integers(numberOfAgents, size=(1,2))
# print(agents)

M1= MoneyArray[agents[0,0]-1]
# print(M1)
M2= MoneyArray[agents[0,1]-1]

print(M1,M2)

P1, P2 = fsolve(equations,(1,1))

# m1 = (1-a1-a2)*(M1 + P1*Q1)
# m2 = (1-b1-b2)*(M2 + P2*Q2)

m1 = (M1 + P1*Q1)/( P1*((P1*a3/a1)**(1/(r-1))) + P2*((P2*a3/a2)**(1/(r-1))) + 1)
m2 = (M2 + P2*Q2)/( P1*((P1*a3/a1)**(1/(r-1))) + P2*((P2*a3/a2)**(1/(r-1))) + 1)

print(a1, a2, a3, P1, P2, m1, m2)

MoneyArray[agents[0,0]-1]=m1
MoneyArray[agents[0,1]-1]=m2

print(agents[0,0]-1,agents[0,1]-1)
print(MoneyArray.sum())
print(MoneyArray)

if(min(MoneyArray)<lowerBound):
lowerBound=min(MoneyArray)

if(upperBound<max(MoneyArray)):
upperBound=max(MoneyArray)

data = MoneyArray
binwidth = 0.05
hist, binedges=np.histogram(data, bins=np.arange(0, 5 + binwidth, binwidth))
normalizedhist = hist/(hist.sum()*binwidth)

print(data)
print(data.sum())
print(binedges)
print(normalizedhist)
store_moneyHistograms.append(normalizedhist)
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finalHist=np.average(store_moneyHistograms, axis=0)
xAxis=np.arange(0, 5 , binwidth)
print(finalHist)

plt.bar(xAxis, finalHist, width=0.1)
plt.title("a3=0.1 r=10")
plt.plot(xAxis, np.exp(-xAxis),’r’)
plt.show()
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