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Sachin Jayaswal and Gajendra Kumar Adil 
 

Abstract 

Cell Formation (CF) is an important problem in the design of cellular manufacturing system. 

Despite a large number of papers on CF been published, only a handful of them incorporate 

operation sequence in inter-cell move calculations and consider alternative process routings, cell 

size, production volume and allocating units of identical machines into different cells. Modeling 

the above factors makes CF problem complex but more realistic. This paper develops a model 

and solution methodology for a problem of Cell Formation to minimize sum of costs of inter-cell 

moves, machine investment and machine operating costs considering all the factors mentioned 

above. Algorithm comprising of Simulated Annealing and Local Search heuristics has been 

developed to solve the model. A limited comparison of the proposed algorithm with optimal 

solution generated by complete enumeration of small problems indicates that the algorithm 

produces solution of excellent quality. Large problems with 100 parts and 50 machine types are 

efficiently solved using the algorithm. 

 

Keywords: Cell formation; alternative part routings; replicate machines; simulated annealing 

algorithm. 

1. Introduction 
In cellular manufacturing (CM) the production system is organized into smaller units called cells. 

Cell formation (CF) process identifies the machine group and the part family for each cell in the 

CM system. CF is such an important area of research that several CF approaches and algorithms 

have been developed in the literature considering various production factors, scenario and 

objectives. Implementing CM system can help organizations achieving benefits in several ways, 

such as, simplified planning and control procedures, reduced throughput times, reduced work-in-
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process inventory, reduced setup times and reduced material handling (Wemmerlov and Hyer, 

1989). 

Small and independent cells facilitate achieving most of the benefits that CM system realizes 

(Burbidge, 1991). Forming small and independent cells is, therefore, an important goal of CF. 

Independent cells eliminate inter-cell moves and the associated cost. Consideration of operation 

sequence and production volumes of parts is required to realistically capture the cost involved in 

inter-cell moves. Inter-cell moves can be reduced either by exploiting alternative process 

routings or by replicating a sufficient number of bottleneck machines into appropriate cells. This 

can be illustrated by considering two consecutive operations, o1 and o2, of a part assigned 

respectively to machine type m1 in cell c1, and machine type m2 in cell c2, thus resulting in an 

inter-cell move. Operation o2 needs to move to cell c2 as cell c1, it is assumed, does not have 

enough capacity on machine m2. If operation o2 can alternatively be performed on machine type 

m3 available in cell c1, it (operation o2) can be shifted to cell c1 to eliminate the inter-cell move.  

However, machine m3 may require higher operating cost (variable cost). Alternatively, one can 

eliminate the aforementioned inter-cell move by incurring investment (fixed cost) in additional 

machine of type m2 in cell c1. The above example although illustrates that the use of alternative 

machine or machine replication can help reduce inter-cell moves, same cannot be done without 

consideration of machine operating cost or machine investment cost. Thus there exists a trade off 

between operating cost (for using alternative process routings), fixed cost (of machine 

replication) and cost of inter-cell moves. CF procedure must, consider availability of alternative 

process plan, allocation of multiple units of a given machine type to more than one cell as needed 

and operation sequence in computation of inter-cell moves in order to meaningfully capture the 

above trade off. Allowing allocation of multiple units of a machine type to different cells makes 

the cell formation problem more realistic although it complicates modeling (Sofianopolou, 

1999). The same is true in considering operation sequence in computation of inter-cell moves. 

Literature on CF considering sequence data, machine replication and alternative process routings 

and machine cost simultaneously is very limited. 

Nair and Narendran (1998) and Won and Lee (2001) use indices to account for the operation 

sequence but do not consider replicate machines, alternative process routings or machine cost. 

Wu (1998), Wu and Salvendy (1999) and Lee and Chen (1997) consider inter-cell moves, 

operation sequence, production volume as well as replicate machines, but alternative process 
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routing or the trade off between cost of inter-cell moves and machine cost is not considered. 

Lozano et al. (1999), Sofianopoulou (1999) and Zhao and Wu (2000) consider presence of 

alternative routing but do not take into account trade off between cost of inter-cell moves and 

machine cost.  

Su and Hsu (1998) solve a cell formation problem to minimize costs of machines, intra-cell and 

inter-cell moves. Seifoddini (1989) uses the duplication cost and the associated reduction in 

inter-cell material handling cost to arrive at a decision on machine duplication. However, 

alternative process routing is not considered in either of the papers. 

Rajamani et al. (1996) and Shanker and Agarwal (1997) account for alternative process routing 

and cell size but do not capture the operation sequence correctly in inter-cell move. Yin and 

Yasuda (2002) take into account operation sequence in the computation of similarity index, but, 

it is not used for inter-cell move calculations. Vakharia and Chang (1997) consider the objective 

of minimizing total cost of inter-cell moves and investment in machines and have accounted for 

operation sequence, production volume, replicate machines and cell size. They, however, do not 

consider alternative process routing. Beaulieu et al. (1997) take into consideration all the above 

factors and develop a two stage heuristic algorithm. However, quality of solution produced from 

their algorithm has not been assessed. 

A review of the literature on CF considering minimizing inter-cell moves reveals that works that 

consider all the important factors – production volume, operation sequence, splitting (or 

allocating) replicate machines to different cells, alternative process routing and cell size – 

simultaneously are few. Many minimize inter-cell moves without accounting for the trade off 

with machine costs. The objective of this paper is threefold: first, to consider all the above 

factors in developing a CF model; second, to develop an efficient solution approach capable of 

handling large problems; and third, to compare the results with optimal solution for problems 

that can be optimally solved with reasonable computational efforts.  

The remainder of the paper is organized as follows. In § 2, the problem statement and notations 

are described and mathematical model is developed. The solution procedure is presented in § 3. § 

4 illustrates the solution procedure using an example. § 5 compares the solution obtained by the 

algorithm with the optimal solution and provides computational experience on randomly 

generated large size problems. Conclusions are presented in § 6. 
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2. Problem formulation 

There are M (m = 1, 2,…., M) machine types, each of which can be acquired in multiple units 

and can be distributed among C (c = 1, 2,…., C) cells as required. One unit of machine type m is 

assumed to have an annual production capacity of Am hours. Further, a machine type m can be 

utilized up to a fraction MUTm of its production capacity. There are N (i = 1, 2, 3….., N) parts 

with known annual demand di for part i. Further, each part i requires Ji (j = 1, 2, 3…, Ji) 

operations. This paper considers rejects and, therefore, the number of useful units of part i after 

each operation j decreases by the amount of rejection (Rij %). Number of part i input units for 

operation j, dij, can be calculated using equation (1). 
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An operation j for part i can be performed using Kij (k = 1, 2,…, Kij) alternatives (or options) in 

terms of choosing a machine type from available M machine types. It is assumed that the reject 

rate is independent of the machine chosen. Let Pijk be the time for operation j of part i using k th 

alternative (for machine). It needs to be indicated which machine type m is used as alternative k. 

A set of parameters Aijkm having values of 1 when kth alternative (for machine) for operation j of 

part i is provided by machine type m, 0 otherwise, is defined for this purpose. 

At design stage, it is assumed that splitting of demand between machine types or cells is not 

allowed for an operation. The cell formation decisions involve determining, for each part i and 

operation j, the selection of a unique alternative (for machine) k and cell c, the associated load 

(number of machines, not necessarily an integer) on machine of type m in each cell c, and 

number of machines (load rounded to the next higher integer) of type m needed to be acquired in 

each cell c. The following three variables are defined to represent the above decisions. 

 

Yijkc   = 1 if operation j on part i is performed in cell c using kth alternative (for machine), 

and 0 otherwise. 

Xmc = load on machine type m in cell c (not necessarily having an integer value). 
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⎡Xmc⎤ =  number of machine type m acquired in cell c. X rounded to the next higher 

integer is denoted by .  ⎡ ⎤X

The following two cost parameters for one unit of machine type m are defined. 

MFCm = Annual fixed cost (investment). 

MVCm = Annual variable cost (operating cost) of a fully loaded machine. If it is partially 

loaded the cost is computed pro rata. 

Space restrictions on a cell limit the maximum number of machines it can accommodate to S. 

Cost H is attached to a unit inter-cell move and is assumed to be independent of the location of 

the cells in the plant.  

An integer programming model can be written as follows to model the problem just described.  

Mathematical model 
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In this model, the objective function (2) is the sum of machine investment, machine operating 

cost and cost of inter-cell moves. Constraint set (3) ensures that each operation on a part is 
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completely carried out on only one alternative machine type and in one cell. At design stage, it is 

assumed that splitting of demand for an operation between machine types or cells is not 

permitted. Constraint set (4) estimates the number of machines of each type required in each cell, 

based on the available annual production time and the load allocated to that machine. CF 

objective of forming small cells is included as a limit on the size of each cell using constraint set 

(5). Binary and non-negativity restrictions on the decision variables are enforced through 

constraint sets (6) and (7) respectively.  

3. Solution algorithms 

For a problem of practical size, the formulation presented in § 2 will involve too many integer 

variables to be solved optimally. Therefore, this paper, like many other papers on CF, resorts to a 

heuristic approach to solving the model (§ 2). Simulated annealing algorithm (SAA) is developed 

to produce a solution, which is further improved by using a local search (LS) procedure. A 

feasible solution has, for each part and operation, a unique selection of a machine type and a cell 

that satisfies constraints (3) to (7). Cost of a solution is the value of the objective function (2). 

3.1 Simulated annealing algorithm (SAA) 

SAA implementation of this paper uses the following scheme for generation of initial solution, 

neighbourhood solution and termination of the algorithm. 

• Initial Solution: Initial solution is generated by randomly selecting values for Y variables 

until a feasible solution is obtained. 

• Neighbourhood solution: A neighbourhood solution is obtained by perturbing an 

operation assignment of a part to a different machine type/cell.  

• Termination criteria: The algorithm terminates if one of the following conditions holds 

true: 

 Number of iterations reaches a pre-specified maximum value. 

 There is no improvement in the objective function value for the last 10 iterations. 

 Acceptance ratio (number of transitions accepted/ number of transitions 

attempted) at any temperature reaches a minimum pre-specified value. 

The detailed Simulated Annealing Algorithm (SAA) is given in the appendix. 
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3.2 Local search (LS) 

The Local Search starts with the final solution obtained from SAA. It picks the first operation of 

the first part and tries allocating it to the next alternative machine within the same cell, satisfying 

the constraint on cell size. Once such an alternative machine for the current operation, which 

gives a better objective function value, is found the new solution is accepted and the whole 

process restarts from the first operation of the first part. If no such alternative machine to the 

current operation can be found within the same cell, it tries searching for the same or alternative 

machine in the next cell that satisfies the constraint on the cell size. It is attempted to find out 

move that improves the solution by sequentially considering all the operations of all the parts. 

4 An illustrative example 

Algorithm developed in this paper is illustrated using the problem of 8 parts and 8 machine types 

from Beaulieu et al. (1997), which has the required data. 

------------------------ [Insert table 1 and table 2 about here ] ------------------------------ 

Step 0: Read and Initialize 

0.1 Data on process requirements (Pijk), reject rates (Rij), number of alternative machines 

(Kij), demand (di), machine fixed cost (MFCm) and machine variable cost (MVCm) are given 

in table 1 and table 2. Other data used are as follows: Maximum number of cells, C = 2; 

maximum number of machines allowed in a cell, S = 6; and unit cost of inter-cell move, H 

= 0. 

0.2 Simulated annealing parameters are read as: T0 = 70,000; ATmax = 100; α = 0.97; imax = 

1,000; Rf = 0.0005; Lmax = 300; NM = 100; NC=100; and NP=100. 

0.3 Initial iteration counter and temperature are fixed as i = 0; and Ti = T0. 

0.4 The initial assignment of operations to machines and cells, SOL0
 and the calculation of 

the objective function value OBJ0 are shown in table 3 and table 4. Initial solution SOL0 

and initial objective function value OBJ0 become the best solution SOLbest and best 

objective function value OBJbest, respectively. 
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Total cost = machine cost (fixed + variable) + cost of inter-cell moves 

= (26,848.4+26,856.4+28,793.6+29,743.8)+00.00 = 112,242.3 

 

------------------------[Insert table 3 and table 4 about here ]------------------------------ 

 

Step 1: Outer loop, i.e. steps (1.1 - 1.7), is executed for 162 iterations. The solution is terminated 

by the criteria of final acceptance ratio.  

Step 2: The final solution is produced in table 5 and table 6.  

Total cost = machine cost (fixed + variable) + cost of inter-cell moves 

= (20,285.46+20,285.46+33,084.47+30,473.39) +00.00 = 111,296.35 

------------------------[Insert table 5 and table 6 about here ]------------------------------ 

 

The Local Search could not find any further improvement upon the solution generated by SAA 

for this problem. The objective function value obtained as reported by Beaulieu et al. (1997) is 

111,286, which is very close to the value obtained using our algorithm. The small difference of 

10.35 (< 0.01 %) in the objective function value can be attributed to the rounding error. 

However, for this problem, on verifying the results obtained by Beaulieu et al. (1997), it appears 

that there is a typographical error in the case of processing time for OP51 on machine M3. The 

processing time of 20 seems to have been mistyped as 2. For the comparison of the algorithm 

developed in this paper, the corrected value, 20, is used, although the proposed algorithm gave 

even a better solution with objective function value of 106,963.891 using the value, 2, as 

reported in the paper.  

In the next section, comparison of solution from the proposed algorithm with the optimal 

solution for small size problems is presented followed by the computational experience with 

large problems. 
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5 Computational experience 

§ 5.1 gives the scheme for generation of data for computational experience. § 5.2 gives 

comparison of the solutions obtained with the optimal for small size problems. Optimal solutions 

are generated by complete enumeration, which becomes computationally very difficult for larger 

size problems. Computational experience with larger size problems, therefore, is reported 

separately in § 5.3. 

5.1 Generation of Data  

Five small size problems are solved in § 5.2 for comparison of the solution with the optimal. In § 

5.3, the heuristic is evaluated for large problems. For each problem, five instances are generated 

randomly. The following scheme is used for data generation.  

• Max J is defined to be the longest operation sequence amongst parts. The length of the 

operation sequence, Ji, for part i is fixed at Max J for all operations in § 5.2. For problems 

of larger size in § 5.3, Ji is randomly generated using a discrete uniform distribution with 

parameters 1 and Max J. The value of Max J is varied for each problem in § 5.2, while it 

is set at 10 for all the problems in § 5.3. 

• The annual demand (number of completed units), di, for each part i, is randomly 

generated using discrete uniform distribution with parameters 3,000 and 6,000. The reject 

percentage, Rij, for part i, operation j is randomly generated using the same distribution 

with parameters 1 and 3. The annual demand dij, for part i, operation j, is calculated using 

the data on part demand and reject percentage using (1). 

• The number of alternative machines, Kij, for part i, operation j is randomly generated 

using a discrete uniform distribution with parameters 1 and Max K. The value of Max K 

is set at 2 for problems in § 5.2 and at 3 for problems in § 5.3. The particular machine 

type m used as kth alternative to carry out operation j of part i is randomly generated 

using a discrete uniform distribution with parameters 1 and M. This fixes the value of 

Aijkm. It is possible that a machine type may appear more than once in the operation 

sequence. However, consecutive operations for a part are not allowed on the same 
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machine type (consecutive operations on the same machine type are considered as a 

single operation).  

• The processing time, Pijk, for part i, operation j on machine alternative k for machine type 

is randomly generated using a discrete uniform distribution with parameters 12 and 25 

(minutes). 

• The fixed and variable machine costs, MFCm and MVCm for machine type m are 

randomly generated using discrete uniform distribution with parameters 2,000 and 

10,000, and 3,000 and 20,000, respectively. 

• The maximum utilization ratio MUTm for all machine types m is fixed at 0.90. The cost of 

inter-cell move, H is fixed at 0.5.An annual production capacity Am, of 2,000 and 4,000 

hours are assumed for problems in § 5.2 and § 5.3, respectively.  

5.2 Comparison with optimal solution 

• Implementing the heuristic 

Problem characteristics are shown in table 7. The values of Simulated Annealing parameters 

are selected as given below: 

T0  = 20,000; α = 0.95; imax = 1,000; ATmax = 50; Lmax = 100; Rf = 0.01; NM = 10; NC = 20; NP 

= 25.  

------------------------[Insert table 7 about here ]------------------------------ 

 

• Performance measures 

 Optimality gap: The percentage gap in the objective function value from the optimal is 

reported in table 7. 

 Computation time: The computation time (cpu time in seconds) on Sun Ultra spark 10, 

400 MHz using Solaris 2.8 for Simulated Annealing Algoroithm, Local Search and 

Optimal Solution by complete enumeration are reported in table 7. 
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 Results 

It is observed from table 7 that in 12 out 25 cases, SAA gives optimal solution. In one case, 

the optimal solution is achieved after Local search. The worst optimality gaps obtained are 

9.691% and 4.687% for SAA and Local Search, respectively. The total number of 

enumerations to obtain an optimal solution can be expressed as: 

Πij [Kij * C]  

Table 7 also shows that the cpu time for the optimal solution by complete enumeration 

increases rapidly with the size of the problem. This time increases from as low as 0.3 seconds 

for a problem with 5 parts, 2 operations, 2 cells to as high as 421.78 seconds for a problem 

with 6 parts, 2 operations, 3 cells.  This time increases exponentially with number of parts 

and operations. The computation time for SAA, however, shows little variation with the size 

of problem. SAA, therefore, proves to be computationally more efficient with the increase in 

the size of problem. 

5.3 Computational experience with large problems 

Large problems with 100 parts and 50 machine types are considered. Maximum number of cells, 

C, allowed is fixed at 4 for all the problems Maximum number of machines allowed in a cell, S, 

is fixed at 50. All other data are generated as described in § 5.1. 

• Implementing the heuristic 

Values of the following Simulated Annealing parameters are fixed: 

T0  = 500,000; imax = 2,000; Rf = 0.01; NM = 10; NC = 20; NP = 500.  

SAA is run for different length of time and its performance in terms of solution quality 

recorded. This is achieved by varying the cooling rate (α), maximum accepted transition at 

each temperature (ATmax) or maximum transitions at each temperature (Lmax,) as shown in 

table 8. 

------------------------[Insert table 8 about here ]------------------------------ 
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Performance measures 

 Percentage improvement: Percentage improvement in the objective function value 

achieved using each of SAA and Local Search is reported in table 8. Percentage 

improvement is reported relative to the randomly generated initial solution.  

 Computation time: The computation time (in seconds) on Sun Ultra spark 10, 400 MHz 

using Solaris 2.8 for SAA and Local Search are reported in table 8.  

• Results 

The maximum, minimum and the average values of computation times and % improvements 

obtained from solution of five instances of the nine problems are presented in table 8. Percentage 

improvement as large as 30.25 and 10.68 in the objective function value are achieved for SAA 

and Local Search, respectively. With increase in values of α (decreasing cooling rate), ATmax and 

Lmax SAA runs longer as indicated by the higher cpu times in table 8. However, solution quality 

from SAA also improves as indicated by greater percentage improvement in the objective 

function values. The counterpart LS heuristic exhibits the opposite trends in solution time and 

quality. However, the quality of final solution obtained by running, both SAA and LS 

sequentially does not vary significantly for these nine parameter settings, and the total 

improvement in the objective function value remains around 35%, although the total 

computation time varies. The total computation time, as well as, SAA computation time, 

increases with the increase in values of α, ATmax and Lmax. Thus running SAA for a shorter time 

appears to be a better strategy for the problem tested.  

6 Conclusions  
 

There are very few papers that simultaneously consider operation sequence, machine replications 

and alternative process routings in cell formation. Modeling these factors makes Cell Formation 

problem complex but more realistic. In this paper, a model and solution methodology for a 

problem of Cell Formation to minimize sum of costs of inter-cell moves, machine investment 

and machine operating costs are developed. The model takes into account operation sequence in 

computation of inter-cell moves, allocating replicate machines of same type to different cells, 

alternate process routes, production volumes and cell size, amongst other factors. Solution 
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algorithm comprising of Simulated Annealing and Local Search heuristics has been developed to 

solve the model. Computational experiences show that the algorithm generates good quality 

solution and capable of solving large problems.  
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Appendix: Simulated Annealing Algorithm (SAA) 

Step 0: Read and Initialize 

0.1 Read process requirements: demands, dij; alternative machines and processing times, Pijk ; 

machine capacities (Am) and utilization limits (MUTm ); machine costs (FMCm and 

VMCm); maximum number of cells, C; maximum cell size, S; and unit cost of inter-cell 

move, H. 

0.2 Define the annealing parameters: initial temperature, T0; maximum transitions at each 

temperature, Lmax; maximum accepted transition at each temperature, ATmax; 

decrementing factor, α; maximum number of iterations, imax; and final acceptance ratio, 

Rf. Also, define values of parameters NM, NC, NP to be used in the neighbourhood search 

in steps 1.3.2c, 1.3.2e, 1.3.2f. 

0.3 Initialize iteration counter: i = 0, temperature Ti = T0. 

0.4 Generate initial feasible solution, SOL0 and determine its objective function value, OBJ0. 

Initialize the best solution: SOLbest =SOL0 and the best objective function value: OBJbest = 

OBJ0. 

Step 1: Execute outer loop, i.e., steps (1.1 - 1.7) until conditions in step 1.7 are met. 

1.1  Initialize inner loop counter l = 0, and accepted number of transitions AT = 0. 

1.2  Initialize solution for inner loop, SOLi
0  = SOLi, OBJi

0  = OBJi. 

1.3  Execute inner loop, i.e., steps (1.3.1 – 1.3.5) until condition in step 1.3.5 is met. 

1.3.1 Update l = l + 1 

1.3.2  Generate a feasible neighbourhood solution by perturbing an operation assignment 

of a part to a machine/cell and obtaining new machine/cell allocation for the 

operation (get SOLi
l, OBJi

l) following steps 1.3.2 a- 1.3.2 g. 

a) Randomly select a part, say i, and an operation, say j.  

b) If the selected operation has alternative machine(s), go to c), else go to d). 
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c) Select randomly a different alternative machine that does not violate the 

constraint on cell size. If no alternative machine is found in a pre-specified number 

of trials (NM) that satisfies the constraint on cell size, go to d). 

d) Assign the operation to a randomly selected different cell that satisfies the 

constraint on cell size.  

e) If for the selected operation no alternative machine/cell can be found in a pre-

specified number of iterations (NC) that satisfies the constraint on cell size, go to a). 

f) If no part can be found in a pre-specified number of iterations (NP) for which there 

is possible any operation with alternative machine/cell satisfying the constraint on 

cell size, go to step 2. 

g) Generate new solution for this operations assignment SOLi
l, and calculate new 

objective function value, OBJi
l. 

1.3.3 Let δ = OBJi
l – OBJi

l-1. 

1.3.4 If δ ≤ 0 or random (0,1) ≤ iTe
δ−

is true, then, accept SOLi
l and OBJi

l and increment 

AT by 1. Otherwise, reject the solution and assign, SOLi
l  = SOLi

l-1, OBJi
l = OBJi

l-1. 

1.3.5 If one of the following conditions holds true: AT ≥ ATmax or l ≥ Lmax, then assign l 

to Li (length of Markov chain), terminate the inner loop and go to 1.4, else continue 

the inner loop and go to 1.3.1. 

1.4 Update: i = i + 1 

1.5  Update SOLi
  = SOLi-1

l-1, OBJi = OBJi-1
l-1. If OBJi < OBJbest then SOLbest = SOLi and 

OBJbest = OBJi. 

1.6  Reduce the cooling temperature: Ti = α * Ti-1. 

1.7  If one of the following conditions holds true: i ≥ imax; or the acceptance ratio (defined as 

AT / Li) ≤ Rf; or the objective function value for the last 10 iterations remains the same, 

then terminate the outer loop and go to 2, else continue the outer loop and go to 1.1. 

Step 2: Print the best solution obtained and terminate the procedure. 
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Part, 
i 

Part 
demand,di 

Operation, 
j 

% 
Rejects 

(Rij) 

Operation 
demand, 

dij

No. of 
alternative 
machine 

types,   
Kij

[Alternative k] Machine types, m  
(Process times Pijk on these machines, 

expressed in minutes) 

OP11 1 5,205.633 2 [1] M4 (15), [2] M6 (15) 

OP12 1 5,153.577 1 [1] M5 (17) P1 5,000 

OP13 2 5,102.041 2 [1] M1 (6), [2] M2 (6) 

OP21 2 4,945.856 1 [1] M3 (23) 
P2 4,750 OP22 2 4,846.939 1 [1] M1 (15) 

OP31 2 4,250.372 1 [1] M3 (18) 

OP32 1 4,165.365 2 [1] M4 (16); [2] M6 (13.5) P3 4,000 

OP33 3 4,123.711 1 [1] M7 (25) 

OP41 1 3,864.788 2 [1] M2 (15.5), [2] M4 (15) 

OP42 1 3,826.14 1 [1] M6 (19) P4 3,750 

OP43 1 3,787.879 1 [1] M5 (14) 

OP51 2 5,726.781 2 [1] M3 (20)*,  [2] M8 (18.5) 
P5 5,500 

OP52 2 5,612.245 2 [1] M2 (12), [2] M4 (13) 

OP61 1 3,643.943 2 [1] M3 (15.6), [2] M8 (13) 

OP62 2 3,607.504 2 [1] M2 (18.5), [2] M4 (17.75) P6 3,500 

OP63 1 3,535.354 1 [1] M6 (14.3) 

OP71 2 4,250.372 2 [1] M3 (12), [2] M8 (10.3) 

OP72 1 4,165.365 2 [1] M2 (11), [2] M4 (17) P7 4,000 

OP73 3 4,123.711 1 [1] M7 (26) 

OP81 1 5,785.299 2 [1] M2 (18), [2] M4 (17) 

OP82 3 5,727.377 1 [1] M1 (12) P8 5,500 

OP83 1 5,555.556 3 [1] M4 (22.5), [2] M5 (21), [3] M6 (22)

*value reported in the paper is 2 which has been corrected. 

Table 1: Parts demand and operation requirements (extracted from Beaulieu et al., 1997) 
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Machine type, m M1 M2 M3 M4 M5 M6 M7 M8 

Fixed Cost, MFCm  2,386.52 3,579.79 5,369.68 5,966.31 8,509.99 6,712.10 6,264.63 6,562.94

Variable Cost, MVCm 3,289.63 6,438.27 11,376.54 6,974.54 8,301.64 6,920.94 17,760.7411,473.68

Am (Hours) 3,983.6 3,950.8 3,950.8 3,942.4 3,934.4 3,942.4 3,926.4 3,947.2 

Table 2: Annual cost and available hours of machines (extracted from Beaulieu et al., 1997 

Machines assigned in the cell  
Cell, c 

Machine type, m No. of units, ⎡Xmc⎤
Operations (OPij )assigned to 

machine type m in cell c 

M1 1 OP13, OP22, OP82 
M2 2 OP41, OP52, OP62, OP72, OP81 
M3 1 OP21, OP31 

1 

M4 2 OP11, OP32, OP83 
M3 1 OP51, OP61, OP71 
M5 1 OP12, OP43 
M6 1 OP42, OP63 

2 

M7 1 OP33, OP73 

Table 3: Initial assignment of operations to machines and cells (step 0.4) 

Machine Req., 
⎡Xmc⎤ 

Load on machines,
Xmc Fixed Cost, MFCm

Variable Cost, 
MVCmMachine 

Type,m Cell, 
c=1  

Cell, 
c=2 

Cell, 
c=1  

Cell, 
c=2 Cell, c=1 Cell, c=2 Cell, c=1  Cell, c=2 

M1 1  0.72  2,386.52  2,367.89  

M2 2  1.45  7,159.58  9,341.56  

M3 1 1 0.80 0.47 5,369.68 5,369.68 9,131.13 5,336.43 

M4 2  1.14  11,932.62  7,953.04  

M5  1  0.60  8,509.99  4,945.91 

M6  1  0.52  6,712.1  3,606.18 

M7  1  0.90  6,264.63  15,855.3 

Total     26,848.4 26,856.4 28,793.6 29,743.8 

Table 4: Annual cost on machines for initial solution. 
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Machines assigned in the cell  
Cell, c 

Machine type, m No. of units, ⎡Xmc⎤
Operations (OPij )assigned to 

machine type m in cell c 

M1 1 OP13, OP22, OP82 

M2 1 OP52, OP81 

M5 1 OP12, OP43 

M6 1 OP32, OP42, OP63 

1 

M7 1 OP33, OP73 

M2 1 OP41, OP62, OP72 

M3 2 OP21, OP31, OP51, OP61, OP71 2 

M4 1 OP11, OP83 

Table 5: Final assignment of operations to machines and cells. 

 

Machine Req., 
⎡Xmc⎤ 

Load on machines,
Xmc Fixed Cost, MFCm Variable Cost, MVCmMachine 

Type, m Cell, 
c=1  

Cell, 
c=2 

Cell, 
c=1  

Cell, 
c=2 Cell, c=1  Cell, c=2 Cell, c=1  Cell, c=2 

M1 1  0.72  2,386.52  2,368.53  

M2 1 1 0.72 0.73 3,579.79 3,579.79 4,654.87 4,687.06 

M3  2  1.74  10,739.36  19,795.2 

M4  1  0.86  5,966.31  5,991.13 

M5 1  0.60  8,509.99  4,947.78  

M6 1  0.76  6,712.10  5,252.99  

M7 1  0.89  6,264.63  15,860.30  

Total     27,453.03 20,285.46 33,084.47 30,473.39 

Table 6: Annual cost on machines for final solution 
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Optimality gap 

(%) 

Computational time 

(cpu time in sec) 
Prob 

No. 

Prob 

insta

nce 

No. of 

Parts, 

N 

No. of 

M/cs 

types, 

M 

Max
No. 
of 

Oprn
MaxJ 

Max 

No. of 

Alt-

mach,

MaxK 

No. 

of 

Cells 

C 

Cell 

size, 

S 
SAA LS  

Optimal 

value SAA LS Optimal

1  5 5 2 2 2 5       

 1       1.13 1.13 77,494 0.56 0.02 0.31 

 2       0 0 37,617 0.33 0.01 0.17 

 3       0 0 93,840 0.42 0.01 0.17 

 4       2.13 2.13 49,402 0.23 0.01 0.34 

 5       0 0 124,357 4.68 0.01 0.30 

2  4 5 3 2 2 6       

 1       0 0 103,854 0.34 0.01 5.12 

 2       9.69 3.43 58,387 4.93 0.02 5.39 

 3       2.27 0 138,168 0.26 0.02 0.72 

 4       0 0 54,036 0.28 0.02 0.43 

 5       2.80 2.80 114,018 0.29 0.01 1.42 

3  5 5 2 2 3 4       

 1       0.15 0.15 78,366 0.44 0.02 22.08 

 2       0 0 37,617 0.37 0.02 11.09 

 3       0 0 93,840 0.65 0.02 10.8 

 4       7.13 3.15 50,173 0.35 0.02 26.71 

 5       0 0 124,358 0.44 0.02 21.33 

Table 7: Comparison of solution with optimal for small size problems (continued in the next 

page)
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Optimality 

gap (%) 

Computational time 

(cpu time in sec) 
Prob 
No. 

Prob 
insta
nce 

No. 
of 

Parts, 
N 

No. of 
M/cs 
types, 

M 

Max 
No. of 
Oprn 
MaxJ 

Max 
No. of 
Alt-

mach,
MaxK 

No. 
of 

Cells 
C 

Cell 
size, 

S SAA LS  

Optimal 

value SAA LS Optima

l 

4  5 5 3 2 2 6       

 1       0 0 127,306 5.72 0.02 83.78 

 2       4.34 1.45 109,612 0.35 0.02 56.82 

 3       1.03 1.03 174,498 10.68 0.02 10.52 

 4       0.28 0.28 101,115 3.65 0.02 5.89 

 5       4.17 4.17 95,263 0.42 0.02 47.12 

5  6 5 2 2 3 4       

 1       0 0 105,634 0.6 0.01 382.5 

 2       0 0 44,339 0.34 0.01 403.4 

 3       0 0 109,257 32.44 0.02 185.6 

 4       4.69 4.69 61,691 0.38 0.02 421.8 

 5       3.60 1.35 133,171 6.25 0.02 372.4 

Table 7: Comparison of solution with optimal for small size problems. 
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Lmax , ATmax → Lmax=100, ATmax=50 Lmax=100, ATmax=50 Lmax=100, ATmax=50α 

↓ Algorithm → SAA LS SAA LS SAA LS 

Max 25.97 10.16 27.89 8.36 29.76 7.50

Min 21.04 8.18 21.53 6.36 22.46 6.31

% 
improvement 
in objective 

function 
value. Avg 23.02 9.31 24.49 7.48 26.10 6.91

Max 41.38 278.58 84.45 236.84 174.58 206.89 

Min 31.32 196.68 60.72 184.34 136.35 139.63 

0.97 

Computation 
time  

(cpu in sec) Avg 35.96 235.69 73.46 204.64 155.52 183.15 

Max 26.87 10.68 28.71 8.19 29.43 9.70

Min 20.82 6.74 23.42 5.21 22.89 4.76

% 
improvement 
in objective 

function 
value. Avg 23.39 8.34 25.90 6.86 26.14 6.83

Max 65.68 251.98 135.73 218.38 251.70 269.82 

Min 42.13 181.36 101.26 164.98 183.31 133.55 

0.98 

Computation 
time  

(cpu in sec) Avg 51.21 218.31 110.66 188.14 213.72 187.12 

Max 27.82 8.27 28.87 8.34 30.25 6.73

Min 20.84 6.69 22.97 6.01 24.29 4.71

% 
improvement 
in objective 

function 
value. Avg 24.95 7.75 26.10 6.86 27.44 5.52

Max 113.03 231.61 227.39 216.20 504.79 190.68 

Min 84.52 198.16 167.48 162.91 365.12 114.69 

0.99 

Computation 
time  

(cpu in sec) Avg 98.92 209.00 194.38 186.23 433.53 154.77 

Table 8: Computational results for large size problems. 
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