
Computational Finance Using QuantLib-Python
c⃝2016 IEEE

Jayanth R. Varma
Vineet Virmani

This is the accepted version of the following paper (Copyright c⃝2016 IEEE):

• J. R. Varma and V. Virmani, “Computational Finance Using QuantLib-Python,” in
Computing in Science & Engineering, vol. 18, no. 2, pp. 78-88, Mar.-Apr. 2016.
doi:10.1109/MCSE.2016.28

The published version of this paper is available at

• http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7426276

An earlier version of this paper was brought out as a Working Paper at the Indian Institute of
Management, Ahmedabad:

• J. R. Varma and V. Virmani, “Derivatives Pricing using QuantLib: An Introduction”, IIMA
W.P. No. 2015-03-16, April 2015

http://dx.doi.org/10.1109/MCSE.2016.28
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7426276

Abstract

Given the complexity of over-the-counter derivatives and structured products, almost all

of derivatives pricing today is based on numerical methods. While large financial

institutions typically have their own team of developers who maintain state-of-the-art

financial libraries, till a few years ago none of that sophistication was available for use in

teaching and research. For the last decade, there is now a reliable C++ open-source library

available called QuantLib. This note introduces QuantLib for pricing derivatives and

documents our experience using its Python extension, QuantLib-Python, in our

course on Computational Finance at the Indian Institute of Management Ahmedabad. The

fact that it is also available in Python has allowed us to harness the power of C++ with the

ease of IPython notebooks in the classroom as well as for student’s projects.

Keywords

Derivatives pricing, Financial engineering, Open-source computing, Python, QuantLib

Introduction

Financial engineering and algorithmic trading are perhaps two of the most

computationally intensive parts of all of finance. A job in either of these areas requires not

only a reasonable expertise in finance, mathematics and statistics, but also, and perhaps

more importantly today, sophistication in computing.

While algorithmic trading is about finding opportunities in markets that give a temporary

statistical edge - so the focus is on speed and data-mining, the field of financial

engineering primarily concerns itself with pricing and managing of derivatives (also

called structured products) designed to meet specific requirements of large banks and

corporations.

The pricing of such products rely on the same principles as those underlying the famous

Nobel-prize winning Black-Scholes formula. Even though the formula is named after the

Nobel-winner Myron Scholes and the late Fischer Black, the name of the formula itself

was given by Robert Merton, the other Nobel winner responsible for creating the

theoretical foundations behind the principle.

While the formula is only applicable for the most simplest of derivatives (plain-vanilla

Call and Put options), the underlying principle is more general. Starting with a stochastic

differential equation (SDE) for the price process of an asset, the Black-Scholes approach

leads to a parabolic partial differential equation (PDE) for the price of the derivative. The

Merton formulation relies more on probabilistic ideas, and leads to the price as a

mathematical expectation. These two alternative, but equivalent, approaches form the

basis of much of financial engineering applications today.

While theoretically the two approaches are equivalent, in practical implementation, the

PDE approach relies on Finite-Difference (FD) methods and the probabilistic approach

relies on Monte-Carlo (MC) simulation.

Given the complexity of modern structured products almost all pricing and risk-

management is based on such numerical methods. While large banks typically have their

own team of ‘quants’ and IT developers hired to implement sophisticated FD and MC

engines, many boutique firms have spawned in the last decade who provide such

specialized services/software for a fee to other banks and organizations.

Till a few years ago, none of that sophistication was available for use in teaching and

research. Neither banks nor the boutique firms share their proprietary software, and if at

all they are available, they are either prohibitively expensive or downright useless. For the

last few years, however, there is now a reliable open-source library available called

QuantLib, built in C++ and also available in Python, Ruby, R and Excel among others.

This note introduces QuantLib for computational finance applications in teaching and

research, along with a ‘worked-out’ example. The fact that it is also available (and

extendable) in Python allows one to harness the power of C++ with the ease of IPython

notebooks.

The Pricing Problem

Market for financial derivatives worldwide today is so large that the size of outstanding

positions (at almost a thousand trillion US dollars) is many times that of stock markets. A

significant part of this market consists of over-the-counter structured products whose

complexity varies from a plain vanilla European Call option to a Bermudan cross-

currency Swaption.

A popular example is a Barrier option, which we use later to illustrate the use of

QuantLib-Python. A barrier option is a derivative whose payoff depends on whether

the price of the underlying security crosses a pre-specified level (called the ‘barrier’)

before the expiration.

The pricing problem for such derivatives typically constitutes working with a stochastic

differential equation (SDE) for the price process (St), like the standard Geometric

Brownian Motion (GBM):

𝑑𝑆𝑡 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊𝑡

where W𝑡 is a standard Brownian motion and the interest rate r is assumed to be a

constant.

Assuming that the diffusion coefficient 𝜎(𝑡, 𝑆𝑡) for the Brownian motion is deterministic

(as taken to be in this note), the Black-Scholes argument based on hedging gives the PDE

for the price of the derivative 𝑉(𝑡, 𝑆𝑡) as:

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
= 𝑟𝑉

with the necessary boundary condition/s coming from the specification of the product

being priced.

The Merton argument, on the other hand, is based on showing the existence of a ‘risk-

neutral’ probability measure and results in 𝑉(𝑡, 𝑆𝑡) as the following mathematical

expectation:

𝑉(𝑡, 𝑆𝑡) = 𝑒−𝑟(𝑇−𝑡)�̃�[𝑉(𝑇, 𝑆𝑇)]

where 𝑇 represents the maturity/expiration of the product being priced, and �̃� is to be

understood as the expectation corresponding to the risk-neutral measure.

The two approaches may look different and seem to be leading to different solutions, but

that is not the case. The Feynman-Kac theorem for parabolic PDEs ensures that they are

theoretically consistent.

Numerical methods

For both the above approaches, the numerical methods are already well-developed in

applied mathematics and probability. In particular, for the task at hand, the most popular

methods for numerically solving the PDE are Explicit and Implicit FD methods and their

variants, including the Crank-Nicholson and the Douglas methods.

The state-of-the-art in simulation-based methods constitutes working with Sobol

sequences and low discrepancy numbers. It is also common to use variance reduction

methods whenever possible, of which antithetic and control variates are the most popular.

Often in most practical applications it is clear which of the two approaches is better suited

for a job, but in general wherever the curse of dimensionality is high (number of assets

more than or equal 4), the MC method is preferred. When pricing products like barrier

options, where the value of the underlying has to be monitored regularly (often

‘continuously’), FD methods are more popular (as one can easily enforce the location of

the barrier to lie on the FD grid).

QuantLib

The QuantLib open-source project was started in the year 2000 at the Italian boutique

risk-management firm RiskMap (now called StatPro Italia). QuantLib website

(www.quantlib.org) states the aim of the project as “...providing a comprehensive

software framework for quantitative finance.”

The first QuantLib package was released in December, 2000 under a liberal BSD

license. This has allowed the banks and software companies to extend and modify the

code without having to release it back. While the original developers, Luigi Ballabio and

Ferdinando Ametrano, remain involved in the development and maintenance of the

library, the project today has more than 150 contributors, with some of them making

substantial contributions. Though financially StatPro continues to support the project

(while also using it for consulting and training), growth and quality of QuantLib has

been driven mainly by the contributions of the open-source financial software community

(see the QuantLib github page for the list of contributors:

https://github.com/lballabio/quantlib/blob/master/QuantLib/Contributors.txt).

Written in C++, the library comes with more than 500 unit tests using the Boost library

(Boost became a pre-requisite after July, 2004). It also makes an extensive use of SWIG

(Simplified Wrapper and Interface Generator), and bindings exist for a variety of

languages including Python, R, Ruby, Excel, C# and others though not all of the are

equally well-developed at this stage (Python being one of the most popular and

developed).

There is a host of information on the project page for any novice to get started (though it

file:///C:/mnt/J_Drive/jrvarma/temp/cise-files/CiSE-Computational-Finance-QuantLib-Python-Manuscript-with-Revisions.odt/www.quantlib.org

does assume a working knowledge of both C++ and quantitative finance), starting with

the help on installation (quantlib.org/install.shtml) and video examples with IPython

notebooks (vimeo.com/channels/qlnotebooks) to a detailed reference manual

(quantlib.org/reference/index.html) and a blog (www.implementingquantlib.com)

maintained by Ballabio. Nonetheless, despite the available information, we have found

that users migrating from Microsoft Excel and the like can get intimidated with the steps

involved. In Box A, we provide step-by-step installation and set-up instructions for the

latest version of QuantLib and QuantLib-Python for both Linux (Ubuntu) and

Windows operating systems.

The way it is developed, QuantLib is completely object-oriented and makes extensive

use of design patterns. Even if someone is not developing models, it is a good example to

learn the use of design patterns when building a financial library.

In terms of financial applications, QuantLib not only includes classes for market

conventions and yield curve models but also comes with low-discrepancy sequences and

solvers for PDEs with a large choice of alternative algorithms and exotic payoffs. With

modern multi-core processors, QuantLib also allows multithreading via OpenMP

(though this feature is still under development).

Structure of QuantLib: Important classes

Price of any derivative, be it a plain-vanilla option or a complex structured product,

depends on the following inputs:

 Price of the underlying securities as on date of pricing and their feeds

 Term structure of interest rates, volatility, inflation and default probabilities

file:///C:/mnt/J_Drive/jrvarma/temp/cise-files/CiSE-Computational-Finance-QuantLib-Python-Manuscript-with-Revisions.odt/quantlib.org/install.shtml
file:///C:/mnt/J_Drive/jrvarma/temp/cise-files/CiSE-Computational-Finance-QuantLib-Python-Manuscript-with-Revisions.odt/vimeo.com/channels/qlnotebooks
file:///C:/mnt/J_Drive/jrvarma/temp/cise-files/CiSE-Computational-Finance-QuantLib-Python-Manuscript-with-Revisions.odt/quantlib.org/reference/index.html
file:///C:/mnt/J_Drive/jrvarma/temp/cise-files/CiSE-Computational-Finance-QuantLib-Python-Manuscript-with-Revisions.odt/www.implementingquantlib.com

 Cash flows (including coupons and dividends) from the instrument

 Stochastic process for the underlying

 Pricing engine (the numerical method used for pricing)

Now if one is pricing a stand-alone product for a ‘student project’, one could just code the

above elements in a single monolithic program to find the price, and it is not altogether

necessary to use an object-oriented approach like QuantLib.

In a large financial institution or a hedge fund, however, derivatives are part of a larger

portfolio and then this monolithic approach quickly becomes inefficient and impractical.

The beauty of QuantLib is that in its spirit and scope, it is very similar to financial

library that one finds in a large bank. It then becomes natural to use QuantLib for

computational finance even in the classroom, as it helps students come up to speed with

the state-of-the-art quickly. This not only helps make the curriculum more relevant, it also

helps attract the best and most interested students to the class (and the institution).

The Instrument class

The Instrument class is designed keeping in mind that as the value of the underlying

security changes, so does the value of a instrument. It is then required to maintain ‘links’

so that when called they would access most current values of the underlying. At the same

time ‘caching’ is desirable - that is the value of the instruments should be recalculated

only when one or more of the input values have changed. In QuantLib this is

operationalized using the Observer design pattern, where instrument plays the role of the

‘observer’ and inputs that of ‘observables’.

The TermStructure class

It is only in the textbook version of the Black-Scholes that interest rates and volatility are

treated as constants. In the messy world of central bank interventions and market

volatility, both are time-varying.

The TermStructure class is responsible for constructing time-varying objects for all such

variables. In particular, its job is to:

 Keep track of its ‘own’ (reference) date and calculate the appropriate future date if

reference date is different from the evaluation date (by using number of business

days forward)

 Convert dates to times (say, when converting discount factors to zero-yields)

 Check whether a given date/time belongs to the domain covered by the term

structure (setting maximum allowed date/range, for example, when fitting

volatility term structures)

With reference dates described in the TermStructure class, there exist specific classes to

do the job of specifying yield curve, volatility, inflation and default probability, along

with specific inherited classes to capture known special cases across different assets.

The Payoff and the Exercise class

All derivatives require specification of a payoff at expiration or early close-out. In

QuantLib, the payoffs are derived from the Payoff class whose descendants include,

among others, PlainVanillaPayoff (which could be set to Call or Put by means of a

switch), AssetOrNothingPayoff and many others. Its use is illustrated later in our

example.

For derivatives with early-exercise feature, a crucial property is the exercise possibilities

available. In QuantLib this is operationalized using the Exercise base class, which

depending on exercise choices available, can be accessed as one of EuropeanExercise

(only at expiration) or BermudanExercise (on a set of discrete dates prior to expiration) or

AmericanExercise (any time before expiration) classes.

The StochasticProcess class

All derivatives pricing begins with the assumption of an appropriate stochastic process for

the underlying and volatility. For example, the Black-Scholes model begins with a GBM

for the stock price, and the Heston model builds on it by adding a square root process for

instantaneous variance.

In QuantLib, stochastic processes are specified using the StochasticProcess Observer

design pattern. The StochasticProcess class descends into a discretization class which

handles how the process is passed into the pricing engine, of which the

EulerDiscretization is the most important one.

The PricingEngine class

An instrument can be priced using any of the different pricing engines available in the

library and with different objectives in mind. For example a Call option may need be

priced for its own sake, or to derive implied volatilities or for calibrating a stochastic

volatility model. And any of these may need to be done via FD or Monte-Carlo methods.

In QuantLib this is operationalized using the PricingEngine class which is modeled as

the Strategy pattern, in which instruments takes an object encapsulating the computation

to be performed. This allows the instrument to be priced using any of the various engines

available in the library.

For reasons of implementation, most pricing engines do not descend from the

PricingEngine class, but from a generic subclass called GenericEngine. Currently the

pricing engines are available for Asian, Barrier, Basket, Cap/floor, Cliquet, Forward,

Quanto, Swaption and Vanilla option engines. For most engines, all three procedures,

including Analytic, FD and MC methods are available.

Although there are other important classes implementing processes like random number

and path generation (RandomSequenceGenerator and Path classes), calibration (the

CalibrationHelper and CalibratedModel classes) and models like ‘trees’ (the Lattice and

DiscretizedAsset classes), again, since they aren’t discussed in our example we leave the

details for these to the relevant chapters of the QuantLib reference manual and the

Ballabio book.

Example: Pricing Barrier option using FD

Even though barrier option is a simple enough product, and its correct value is available

as a closed-form formula, it is perfectly suited to illustrate the use of QuantLib and

QuantLib-Python as it allows one to discuss the main challenges faced in pricing

without the complications of an exotic product. In particular, we discuss the pricing of a

Down-and-Out Call option using FD method implemented in QuantLib. The fact that

its value is available in analytically, also allows us to compute the pricing error of the FD

scheme.

A barrier option (colloquially referred to simply as ‘barriers’) is a derivative whose payoff

depends on whether the price of the underlying security crosses a pre-specified level

before the expiration. It comes in two basic varieties:

 Knock-in: The option gives a payoff only if the barrier is breached before

expiration

 Knock-out: The option expires worthless if the barrier is breached before

expiration

Barriers are also typically categorized in relation to the current value of the underlying. So

if the barrier level of a knock-out option is set to a value below (above) the current value

of the asset, it is referred to as a ‘Down-and-Out’ (’Up-and-Out’) option. The ‘in’ options

are defined similarly. In plain-vanilla barriers, the payoff at expiration could be either of a

Call or a Put variety. Putting all variants together, then, there exist 8 different

combinations of plain-vanilla barrier options.

To mathematically represent the payoff of a barrier option, it is convenient to call 𝑚𝑇 and

𝑀𝑇 as the minimum and maximum value respectively of the asset between the evaluation

(𝑡) and expiration (𝑇) date as:

𝑚𝑇 = min
0≤𝑡≤𝑇

𝑆𝑡

𝑀𝑇 = max
0≤𝑡≤𝑇

𝑆𝑡

Given a barrier level 𝐵𝑑, the payoff of a Down-and-Out (DO) Call option, for example, is

then written as:

𝑉𝑇(𝐷𝑂 𝐶𝑎𝑙𝑙) = (𝑆𝑇 − 𝐾)+𝐼[𝑚𝑇 > 𝐵𝑑]

where 𝐼[𝑚𝑇 > 𝐵𝑑] represents an indicator variable which takes the value 1 if the

minimum value of the asset before expiration lies above the barrier.

Similarly for an Up-and-In (UI) Put option with barrier 𝐵𝑢, the payoff is written as:

𝑉𝑇(𝑈𝐼 𝑃𝑢𝑡) = (𝐾 − 𝑆𝑇)+𝐼[𝑀𝑇 > 𝐵𝑢]

where 𝐼[𝑀𝑇 > 𝐵𝑢] represents an indicator variable which takes the value 1 if the

maximum value of the asset before expiration crosses the barrier 𝐵𝑢.

For example, standard Black-Scholes PDE for the value of an UO Call option Vt is given

as:

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
= 𝑟𝑉

with the associated boundary conditions as:

𝑉(𝑇, 𝐵𝑑) = 0 0 ≤ 𝑡 ≤ 𝑇

𝑉(𝑇, 𝑆𝑇) = (𝑆𝑇 − 𝐾)+ 𝑆𝑇 > 𝐵𝑑

Other variants of barrier options are handled similarly, except that the math (and

implementation) is easier for pricing ‘out’ options. It is then standard to use the fact that

the sum of an ‘out’ and ‘in’ option must be the same as the price of an equivalent plain-

vanilla option. The price of an ‘in’ option is then derived as a difference between the price

of an equivalent plain-vanilla and an ‘out’ option.

Method: Alternative FD schemes

The FD method begins with discretizing the three partial derivatives in the Black-Scholes

PDE, solving and propagating ‘back’ from the boundary condition at expiration to the

evaluation date.

While discretizing the partial derivatives, whether one does backward or forward

difference turns out to be important. The Explicit FD scheme uses backward difference in

, and the Implicit FD scheme uses the forward difference in t . Borrowing the notation

from Paul Wilmott’s standard text (Chapter 77), the value of the option at each point on

the FD grid is written as:

𝑉𝑖
𝑘 = 𝑉(𝑖𝛿𝑆, 𝑇 − 𝑘𝛿𝑡)

where the grid is thought to be made of points in asset values 𝑆 = 𝑖𝛿𝑆 and times (𝑡 = 𝑇 −

𝑘𝛿𝑡), with time counted ‘backwards’ from expiration to evaluation date.

In particular, in the Explicit FD scheme the space partial derivatives are discretized as:

𝜕𝑉

𝜕𝑆
≈

𝑉𝑖+1
𝑘 − 𝑉𝑖−1

𝑘

2𝛿𝑆

𝜕2𝑉

𝜕𝑆2
≈

𝑉𝑖+1
𝑘 − 2𝑉𝑖

𝑘 + 𝑉𝑖−1
𝑘

𝛿𝑆2

and in the Implicit FD scheme they are discretized as:

𝜕𝑉

𝜕𝑆
≈

𝑉𝑖+1
𝑘+1 − 𝑉𝑖−1

𝑘+1

2𝛿𝑆

𝜕2𝑉

𝜕𝑆2
≈

𝑉𝑖+1
𝑘+1 − 2𝑉𝑖

𝑘+1 + 𝑉𝑖−1
𝑘+1

𝛿𝑆2

The time partial derivative is implemented in the same way in both schemes as:

𝜕𝑉

𝜕𝑡
≈

𝑉𝑖
𝑘+1 − 𝑉𝑖

𝑘+1

𝛿𝑡

The Douglas scheme is a sort of weighted-average of the Implicit and Explicit FD

schemes, and is implemented as:

𝜕𝑉

𝜕𝑆
≈ 𝜃 (

𝑉𝑖+1
𝑘 − 𝑉𝑖−1

𝑘

2𝛿𝑆
) + (1 − 𝜃) (

𝑉𝑖+1
𝑘+1 − 𝑉𝑖−1

𝑘+1

2𝛿𝑆
)

𝜕2𝑉

𝜕𝑆2
≈ 𝜃 (

𝑉𝑖+1
𝑘 − 2𝑉𝑖

𝑘 + 𝑉𝑖−1
𝑘

𝛿𝑆2
) + (1 − 𝜃) (

𝑉𝑖+1
𝑘+1 − 2𝑉𝑖

𝑘+1 + 𝑉𝑖−1
𝑘+1

𝛿𝑆2
)

Note that 𝜃 = 1 gives back the Explicit scheme, and 𝜃 = 1 gives back the Implicit

scheme. With 𝜃 = 1/2, one gets the scheme known as Crank-Nicholson method.

Given the time-step of 𝛿𝑡 and space-step of 𝛿𝑆, the error in both Explicit and Implicit FD

scheme is of the order 𝑂(𝛿𝑡, 𝛿𝑆2), so it decreases like 𝛿𝑡. While there is little difference

in computational effort required to implement Implicit and Crank-Nicholson schemes, in

the latter the error decreases as 𝛿𝑡2, so is always preferred.

Implementation

By now we have all the necessary set-up to talk about implementation of our example in

QuantLib-Python.

Once QuantLib and QuantLib-Python have been installed, the single line: from

QuantLib import * at the beginning of a Python script is sufficient to provide access to

all the functions in the QuantLib library. It is not necessary to know anything about the

C++ language at all. The Python programmer works with Python variables and calls

Python functions. The QuantLib-Python module automatically translates these into

the appropriate C++ function and converts the C++ objects into Python objects. To the

programmer, it is as if the entire QuantLib library had been written in Python instead of

C++.

All this magic is accomplished by the SWIG software which creates wrapper code that

converts between Python and C++ data types before and after calling a C++ function. In

the simplest situation the wrapper code does only three things:

1. All the input arguments to the function are converted from Python data types to

C++ data types

2. The C++ function is called with the arguments provided as C++ data types

3. The return value from C++ function is converted from C++ data types to Python

data types which the Python programmer can use.

In simple cases, SWIG can parse the C++ source code and generate the wrapper code

without too much manual intervention. In the case of a complex software like

QuantLib, it is necessary to give SWIG considerable guidance on how to build the

wrapper. This is done using interface files (which usually have the .i extension).

Moreover, where the C++ code uses templates, each instance of the template must be

wrapped separately, and often the interface file instructs SWIG to wrap only the most

common instances of the template.

The QuantLib library comes with a set of interface files that build wrappers for the

most important QuantLib functions. In most cases, therefore, the programmer does not

have to worry about the interface files at all. During the installation process, the

predefined interface files would be used to build the wrapper files and create the

QuantLib Python module. The programmer can simply add the line “from QuantLib

import *” to the Python code and not worry about C++ and SWIG at all.

In some cases, the predefined interface files may not provide access to a QuantLib

function that is required for the specific task at hand. In our case, the predefined interface

files do not provide access to the FD pricing engine for barrier options. To use this engine

in Python code, it is necessary to modify the interface file and instruct SWIG to build a

wrapper for this engine also. The patch file in Box B shows the lines to be added to the

predefined options.i file to achieve this. Rebuilding the wrappers and the QuantLib

Python module using this modified file allows the Python programmer to use the FD

pricing engine for barrier options in Python code.

In our experience, though, the predefined interface files are quite comprehensive and we

have encountered only a couple of instances requiring modification of the interface files

and rebuilding the module.

Now we illustrates how QuantLib is used in Python. This example used Python 3, but

Python 2.7 would work equally well. Box C has the Python code listing.

Line 3 in the listing (from QuantLib import *) has already been discussed; the import in

line 4 is for plotting. Lines 5 to 9 define the inputs for the barrier option and are pure

Python code except that they refer to two constants (Barrier.DownOut and Option.Call)

defined in QuantLib. We are defining a Down-and-Out Call option with a barrier at 80

and no rebate. The current market price of the underlying is 100, the strike price of the

option is 105, the risk free rate is 5%, the volatility is 20% and the maturity is 12 days.

Lines 10 and 11 define the different grid spacing parameters that we will use for the finite

difference method. The number of grid points for the space (asset price) dimension and

time dimension range from 5 to 5000.

Lines 12 and 13 set the maturity date. Settings.instance().evaluationDate is a QuantLib

global variable that defines the date on which the evaluation is done.

Lines 14 to 19 set up the stochastic process. This function takes the following arguments:

the current market price of the underlying, the dividend yield, the risk free rate, and the

volatility. The last three arguments are converted into instances of the TermStructure class

discussed earlier. The first argument has to be converted into a QuoteHandle which is a

QuantLib class used for market quotes.

Lines 20 to 22 set up the barrier option itself. It may be observed that the last two

arguments to this function use the payoff class and the exercise class discussed earlier. In

lines 23 and 24, we find the true (analytic) value of the option by first setting the analytic

pricing engine and then computing the NPV of the option.

Lines 25 to 33 perform the FD valuation of the barrier option for two different sets of the

space and time grids. First, we keep the time grid fixed at the maximum value of 5000 and

vary the space grid from 5 to 5000. The pricing engine is set to the FD engine, the option

is valued and the pricing error (relative to the true analytic value) is calculated and stored

in uErrors. Second, we keep the space grid fixed at the maximum value of 5000 and vary

the time grid from 5 to 5000. The pricing error is calculated and stored in tErrors.

At the end, we plot the results on a log-log scale (line 34); the rest of the code sets up the

titles and legend for the plot. The code described in this section, along with the associated

IPython notebook and description, are also available on our GitHub page at

https://github.com/jrvarma/fdbarrier.

Results and extensions

[Figure 1 about here]

The graph produced by the Python code above is shown in Figure 1. This graph can be

used to advance several pedagogical purposes. First the red line (dependence of pricing

accuracy on asset price grid) conforms to the theoretical prediction of a straight line in a

log-log plot. Second the initial segment of the blue line (dependence of pricing accuracy

https://github.com/jrvarma/fdbarrier

on time grid) is also a straight line in accordance with theoretical predictions. But the later

segment of the curve is almost flat. This is again generally observed in practice: it is

usually optimal to have significantly finer grid on the asset price than on the time

dimension. Increasing the time grid points without simultaneously increasing asset grid

points to a significantly larger value is often futile.

One question that will arise at the end is what is the point of doing valuation using FD of

an instrument for which there is an analytic pricing formula. The answer is that the FD

method will work under alternative assumptions where there is no analytic formula. For

example, if change the stochastic process from the GBM or Black-Scholes process to a

stochastic volatility or Heston-type process, there is no analytic formula. But the FD

method will work equally well even in this case. The results of the GBM case can guide

us in choosing the appropriate number of grid points to compute the option value.

Conclusion

This note has introduced QuantLib and QuantLib-Python for pricing derivative

securities in practice. Given the sophistication of pricing models used at financial

institutions, reliance on numerical methods is unavoidable. There is currently no other

open-source computing library, barring the OpenGamma platform perhaps (see

www.opengamma.com/opengamma-_platform) designed for margining and market-risk

management applications, which allows capturing real-world pricing issues sitting in the

ivory tower as QuantLib does. While the set-up cost may be high, the time learning the

structure of QuantLib is well worth it.

Once the framework of QuantLib is clear, one need not even know C++. Thanks to

SWIG, one can simply work with QuantLib-Python, and a programmer need only

know Python well. Even though the predefined interface of QuantLib with Python via

file:///C:/mnt/J_Drive/jrvarma/temp/cise-files/CiSE-Computational-Finance-QuantLib-Python-Manuscript-with-Revisions.odt/www.opengamma.com/opengamma-platform

SWIG files may not be complete, in our experience it is comprehensive enough that

requiring modification of the interface and rebuilding QuantLib-Python is quite

infrequent.

At the risk of being overly-optimistic, hopefully this note will act as a nudge for some

students and practitioners of financial engineering and computational finance to ditch

Microsoft Excel and other proprietary software in favour of QuantLib-Python.

References

Ballabio, L. (2015). Implementing QuantLib: A Case Study in C++ for Quantitative

Finance. Leanpub.

Black, F. (1989). How we came up with the option formula. Journal of Portfolio

Management, 15(2):4–8.

Black, F. and Scholes, M. S. (1973). The Pricing of Options and Corporate Liabilities.

Journal of Political Economy, 81(3):637–54.

Duffy, D. (2006). Finite Difference Methods in Financial Engineering: A Partial

Differential Equation Approach. Wiley.

Duffy, D. and Kienitz, J. (2009). Monte Carlo Frameworks: Building Customisable High-

performance C++ Applications. Wiley.

Firth, N. (2004). Why use QuantLib? Technical report, Oxford University.

Glasserman, P. (2003). Monte-Carlo Methods in Financial Engineering. Springer.

Haug, E. G. (2007). The Complete Guide to Option Pricing Formulas. McGraw-Hill.

Heston, S. (1993). A closed-form solution for options with stochastic volatility with

applications to bond and currency options. Review of Financial Studies, 6(2):327–

343.

Merton, R. C. (1973). Theory of Rational Option Pricing. Bell Journal of Economics,

4(1):141–183.

Shreve, S. (2007). Stochastic Calculus for Finance - II: Continuous Time Models. New

Age International, India.

Wilmott, P. (2006). Paul Wilmott on Quantitative Finance - 3 Volume Set. Wiley.

A Box: Installation Instructions for QuantLib and QuantLib-

Python

For QuantLib-Python to work it is necessary to first have QuantLib working. After

listing out the common prerequisites, we provide step-by-step instructions separately for

Ubuntu (12.04 and above) and Windows (7 and above).

Prerequisites

 For installing in Windows, a working C++ environment is required. For the

purposes of instructions here (meant for a novice), it is recommended that the user

install the free Microsoft Visual Express Desktop 2013 edition which comes with

Visual C++ 12 (MSVC12). It is equally easy to install in Windows on Cygwin, or

using MinGW, but then a user familiar with those would probably not need this

user-guide.

 QuantLib-Python requires a working Python environment, and we

recommend working with the Anaconda meta-package. Instructions for both

Ubuntu and Windows are available from the Anaconda install page

(docs.continuum.io/anaconda/install.html). For our purpose here, Windows users

should work with the 32-bit version of Anaconda. It is recommended to install

Anaconda with all the default settings, and update it by running conda update

conda and conda update anaconda. Again, it does not matter if one

installs Anaconda-2.x (with Python 2.7) or Anaconda-3.x (with Python 3), but it is

recommended that the user install the Python 3 version, as that’s where the Python

language seems to be headed.

 Additional ingredients include Boost C++ libraries and SWIG, instructions for

file:///C:/mnt/J_Drive/jrvarma/temp/cise-files/CiSE-Computational-Finance-QuantLib-Python-Manuscript-with-Revisions.odt/docs.continuum.io/anaconda/install.html

which are different for Ubuntu and Windows and is provided below.

 One should download the same version of QuantLib and QuantLib-Python

(http://sourceforge.net/projects/quantlib/files/quantlib/1.6/).

QuantLib-Python requires a working QuantLib, so the user should follow the

instructions in the order as given below.

Installing in Ubuntu

For Ubuntu it is recommended not to install QuantLib from the synaptic package

manager as Ubuntu repositories do not contain the latest version.

 First step is installing the Boost C++ libraries, and in Ubuntu they are available

from the repositories (package name libboost-all-dev)

 After installing Boost, user should install SWIG, also available from the

repositories (package name swig)

 Instructions for installing QuantLib for Ubuntu are available from the

QuantLib project page at quantlib.org/install/linux.shtml. Before proceeding

further, the user should ensure that examples given on the QuantLib page are

working and not giving any errors.

 After installing QuantLib, QuantLib-Python requires running the following

steps (in that order):

o cd \path\to\QuantLib-SWIG-1.6\Python

o python setup.py wrap

o python setup.py build

file:///C:/mnt/J_Drive/jrvarma/temp/cise-files/CiSE-Computational-Finance-QuantLib-Python-Manuscript-with-Revisions.odt/quantlib.org/install/linux.shtml

o python setup.py test

o sudo python setup.py install

Advanced users may alternatively install latest versions of Boost and SWIG directly from

source.

If user-defined .i SWIG files have been added (or existing files have been modified), to

ensure that they are available, the last four steps (from wrap to install) must be repeated.

Installing in Windows

If the Windows user is working with a free version of Visual Studio, it should be kept in

mind to install the 32-bit versions of both Anaconda and Boost as free Visual Studio lacks

the necessary toolkit for building QuantLib-Python for 64-bit (there are ways to

make the free version work in 64-bit, but they are not guaranteed to be replicated

universally). Those with access to the professional Visual Studio environment may

choose 64-bit for everything.

Throughout \path\to\someplace represents the directory of someplace. For

example, if boost_1_58_0 is installed in C:\boost, \path\to\boost_1_58_0

should be taken to mean C:\boost\boost_1_58_0.

 For Windows, pre-packaged binaries for boost are available (latest version 1.58.0)

for specific versions of MSVC (in our case MSVC12) from its sourceforge page.

User should download the executable for the 32-bit architecture

(http://sourceforge.net/projects/boost/files/boost-_binaries/1.58.0/).

 After installing Boost, user should install SWIG. Pre-packaged binaries for SWIG

for Windows are available from the source page (www.swig.org/download.html),

http://sourceforge.net/projects/boost/files/boost-binaries/1.58.0/
file:///C:/mnt/J_Drive/jrvarma/temp/cise-files/CiSE-Computational-Finance-QuantLib-Python-Manuscript-with-Revisions.odt/www.swig.org/download.html

and it is enough to extract the SWIG zip file (latest version swigwin-3.0.5) in

a convenient folder.

 All the commands below assume that we are working in Visual Studio command

prompt (i.e. all the relevant Visual Studio related environment variables have been

set). It can be launched from the Start menu (in Windows 7) or from Apps (in

Windows 8). Alternatively, one can find how to locate it at

https://msdn.microsoft.com/en-_us/library/ms229859(v=vs.110).aspx

 QuantLib in Windows can directly be installed in three simple steps after

launching the Visual Studio command prompt (mind the gaps):

o cd \path\to\QuantLib-1.6

o set myboost=\path\to\boost

o msbuild /p:AdditionalLibPaths=”%myboost\lib32-

msvc-12.0” /p:Configuration=Release

/p:Platform=Win32 QuantLib_vc12.sln

 The last step above may take a while (on an Intel i5, Windows 7 machine with 4

GB RAM it took almost 45 minutes), so it is advisable to have a couple of hours at

hand when sitting down to install QuantLib.

 Installing QuantLib-Python in Windows requires some extra settings (again,

after launching the Visual Studio command prompt):

o cd \path\to\QuantLib-SWIG-1.6\Python

o At the command prompt set the following (mind the gaps):

 set

https://msdn.microsoft.com/en-us/library/ms229859(v=vs.110).aspx

PATH=\path\to\Anaconda3;\path\to\Anaconda3\

scripts;\path\to\swigwin-

3.0.5;\path\to\QuantLib-1.6\lib;%PATH%

 set QL_DIR=\path\to\QuantLib-1.6

 set VS100COMNTOOLS=%VS120COMNTOOLS%

 set INCLUDE=\path\to\boost_1_58_0;%INCLUDE%

 set LIB=\path\to\boost\lib32-msvc-12.0;%LIB%

 echo [build] > setup.cfg && echo

compiler=msvc >> setup.cfg

 The last few steps are identical to that in Ubuntu:

o cd \path\to\QuantLib-SWIG-1.6\Python

o python setup.py wrap

o python setup.py build

o python setup.py test

o python setup.py install

If user-defined .i SWIG files have been added (or existing files have been modified), to

ensure that they are available, one needs to additionally go through the ‘set’ commands

before running the last four steps (from wrap to install).

B Box: SWIG options.patch file

1. --- options.i 2015-01-16 16:22:45.000000000 +0530
2. +++ modified-options.i 2015-02-23 13:30:23.096148000 +0530
3. @@ -1099,6 +1099,63 @@ class MCBarrierEnginePtr : public boost:
4. }
5. };
6.
7. +////////////////// added for finite difference barrier valuation /////////
8. +
9. +%{
10. +using QuantLib::FdmSchemeDesc;
11. +%}
12. +
13. +struct FdmSchemeDesc {
14. + enum FdmSchemeType { HundsdorferType, DouglasType,
15. + CraigSneydType, ModifiedCraigSneydType,
16. + ImplicitEulerType, ExplicitEulerType };
17. +
18. + FdmSchemeDesc(FdmSchemeType type, Real theta, Real mu);
19. +
20. + const FdmSchemeType type;
21. + const Real theta, mu;
22. +
23. + // some default scheme descriptions
24. + static FdmSchemeDesc Douglas();
25. + static FdmSchemeDesc ImplicitEuler();
26. + static FdmSchemeDesc ExplicitEuler();
27. + static FdmSchemeDesc CraigSneyd();
28. + static FdmSchemeDesc ModifiedCraigSneyd();
29. + static FdmSchemeDesc Hundsdorfer();
30. + static FdmSchemeDesc ModifiedHundsdorfer();
31. +};
32. +
33. +%{
34. +using QuantLib::FdBlackScholesBarrierEngine;
35. +typedef boost::shared_ptr<PricingEngine> FdBlackScholesBarrierEnginePtr;
36. +%}
37. +
38. +%rename(FdBlackScholesBarrierEngine) FdBlackScholesBarrierEnginePtr;
39. +class FdBlackScholesBarrierEnginePtr : public boost::shared_ptr<PricingEngine>

{
40. + public:
41. + %extend {
42. + FdBlackScholesBarrierEnginePtr(const GeneralizedBlackScholesProcessPtr&

 process,
43. + Size tGrid = 100, Size xGrid = 100, Size dampingSteps = 0,
44. + const FdmSchemeDesc& schemeDesc = FdmSchemeDesc::Douglas(),
45. + bool localVol = false,
46. + Real illegalLocalVolOverwrite = -Null<Real>()) {
47. + boost::shared_ptr<GeneralizedBlackScholesProcess> bsProcess =

48. + boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(

49. + process);

50. + QL_REQUIRE(bsProcess, "Black-Scholes process required");
51. + return new FdBlackScholesBarrierEnginePtr(
52. + new FdBlackScholesBarrierEngine(bsProcess,
53. + tGrid, xGrid, dampingSteps,
54. + schemeDesc, localVol,
55. + illegalLocalVolOverwrite));
56. + }
57. + }
58. +};
59. +
60. +/////////////////////////// end addition //////////////////////////////
61. +
62. +
63. +
64. %{
65. using QuantLib::QuantoEngine;
66. using QuantLib::ForwardVanillaEngine;

C Box: FD Barrier Python Code

1. #!/usr/bin/env python3
2. # Requires QuantLib-SWIG with modified options.i
3. from QuantLib import *
4. import matplotlib.pyplot as plt
5. barrier, barrierType, optionType, \
6. rebate = (80.0, Barrier.DownOut, Option.Call, 0.0)
7. underlying, strike, rf, sigma, maturity, \
8. divYield = (100, 105, 5e-2, 20e-2, 12, 0.0)
9. # maturity is in days & must be an integer
10. Grids = (5, 10, 25, 50, 100, 1000, 5000)
11. maxG = Grids[-1]
12. today = Settings.instance().evaluationDate
13. maturity_date = today + int(maturity)
14. process = BlackScholesMertonProcess(
15. QuoteHandle(SimpleQuote(underlying)),
16. YieldTermStructureHandle(FlatForward(today, divYield, Thirty360())),
17. YieldTermStructureHandle(FlatForward(today, rf, Thirty360())),
18. BlackVolTermStructureHandle(BlackConstantVol(
19. today, NullCalendar(), sigma, Thirty360())))
20. option = BarrierOption(barrierType, barrier, rebate,
21. PlainVanillaPayoff(optionType, strike),
22. EuropeanExercise(maturity_date))
23. option.setPricingEngine(AnalyticBarrierEngine(process))
24. trueValue = option.NPV()
25. uErrors = []
26. tErrors = []
27. for Grid in Grids:
28. option.setPricingEngine(FdBlackScholesBarrierEngine (
29. process, maxG, Grid))
30. uErrors.append(abs(option.NPV()/trueValue-1))
31. option.setPricingEngine(FdBlackScholesBarrierEngine (
32. process, Grid, maxG))
33. tErrors.append(abs(option.NPV()/trueValue-1))
34. plt.loglog(Grids, uErrors, 'r-', Grids, tErrors, 'b--')
35. plt.xlabel('No of Grid Points (Log Scale)')
36. plt.ylabel('Relative Error (Log Scale)')
37. plt.legend(['Asset Grid Points', 'Time Grid Points'])
38. plt.title('Increasing Asset or Time Grid Keeping the Other Grid at ' + str(maxG)

)
39. plt.show()

100 101 102 103 104

No of Grid Points (Log Scale)

10-6

10-5

10-4

10-3

10-2

10-1

100

101
R

e
la

ti
v
e
 E

rr
o
r

(L
o
g
 S

ca
le

)
Increasing Asset or Time Grid Keeping the Other Grid at 5000

Asset Grid Points
Time Grid Points

Figure 1: Dependence of Pricing Accuracy on Number of Asset Price Grid Points and Time Grid Points

